Error Handling
Pydantic will raise a ValidationError
whenever it finds an error in the data it's validating.
Note
Validation code should not raise ValidationError
itself, but rather raise a ValueError
or
AssertionError
(or subclass thereof) which will be caught and used to populate
ValidationError
.
One exception will be raised regardless of the number of errors found, that ValidationError
will
contain information about all the errors and how they happened.
You can access these errors in several ways:
Method | Description |
---|---|
e.errors() |
Returns a list of errors found in the input data. |
e.error_count() |
Returns the number of errors found in errors . |
e.json() |
Returns a JSON representation of errors . |
str(e) |
Returns a human-readable representation of the errors. |
Each error object contains:
Property | Description |
---|---|
ctx |
An optional object which contains values required to render the error message. |
input |
The input provided for validation. |
loc |
The error's location as a list. |
msg |
A human-readable explanation of the error. |
type |
A computer-readable identifier of the error type. |
url |
The URL to further information about the error. |
The first item in the loc
list will be the field where the error occurred, and if the field is a
sub-model, subsequent items will be present to indicate the nested location of the error.
As a demonstration:
from typing import List
from pydantic import BaseModel, ValidationError, conint
class Location(BaseModel):
lat: float = 0.1
lng: float = 10.1
class Model(BaseModel):
is_required: float
gt_int: conint(gt=42)
list_of_ints: List[int] = None
a_float: float = None
recursive_model: Location = None
data = dict(
list_of_ints=['1', 2, 'bad'],
a_float='not a float',
recursive_model={'lat': 4.2, 'lng': 'New York'},
gt_int=21,
)
try:
Model(**data)
except ValidationError as e:
print(e)
"""
5 validation errors for Model
is_required
Field required [type=missing, input_value={'list_of_ints': ['1', 2,...ew York'}, 'gt_int': 21}, input_type=dict]
gt_int
Input should be greater than 42 [type=greater_than, input_value=21, input_type=int]
list_of_ints.2
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='bad', input_type=str]
a_float
Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='not a float', input_type=str]
recursive_model.lng
Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='New York', input_type=str]
"""
try:
Model(**data)
except ValidationError as e:
print(e.errors())
"""
[
{
'type': 'missing',
'loc': ('is_required',),
'msg': 'Field required',
'input': {
'list_of_ints': ['1', 2, 'bad'],
'a_float': 'not a float',
'recursive_model': {'lat': 4.2, 'lng': 'New York'},
'gt_int': 21,
},
'url': 'https://errors.pydantic.dev/2/v/missing',
},
{
'type': 'greater_than',
'loc': ('gt_int',),
'msg': 'Input should be greater than 42',
'input': 21,
'ctx': {'gt': 42},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
},
{
'type': 'int_parsing',
'loc': ('list_of_ints', 2),
'msg': 'Input should be a valid integer, unable to parse string as an integer',
'input': 'bad',
'url': 'https://errors.pydantic.dev/2/v/int_parsing',
},
{
'type': 'float_parsing',
'loc': ('a_float',),
'msg': 'Input should be a valid number, unable to parse string as a number',
'input': 'not a float',
'url': 'https://errors.pydantic.dev/2/v/float_parsing',
},
{
'type': 'float_parsing',
'loc': ('recursive_model', 'lng'),
'msg': 'Input should be a valid number, unable to parse string as a number',
'input': 'New York',
'url': 'https://errors.pydantic.dev/2/v/float_parsing',
},
]
"""
Custom Errors¶
In your custom data types or validators you should use ValueError
or AssertionError
to raise errors.
See validators for more details on use of the @validator
decorator.
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
foo: str
@field_validator('foo')
def value_must_equal_bar(cls, v):
if v != 'bar':
raise ValueError('value must be "bar"')
return v
try:
Model(foo='ber')
except ValidationError as e:
print(e)
"""
1 validation error for Model
foo
Value error, value must be "bar" [type=value_error, input_value='ber', input_type=str]
"""
print(e.errors())
"""
[
{
'type': 'value_error',
'loc': ('foo',),
'msg': 'Value error, value must be "bar"',
'input': 'ber',
'ctx': {'error': ValueError('value must be "bar"')},
'url': 'https://errors.pydantic.dev/2/v/value_error',
}
]
"""
You can also use PydanticCustomError
, to fully control the error structure:
from pydantic_core import PydanticCustomError
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
foo: str
@field_validator('foo')
def value_must_equal_bar(cls, v):
if v != 'bar':
raise PydanticCustomError(
'not_a_bar',
'value is not "bar", got "{wrong_value}"',
dict(wrong_value=v),
)
return v
try:
Model(foo='ber')
except ValidationError as e:
print(e)
"""
1 validation error for Model
foo
value is not "bar", got "ber" [type=not_a_bar, input_value='ber', input_type=str]
"""
Error messages¶
Pydantic attempts to provide useful default error messages for validation and usage errors.
We've provided documentation for default error codes in the following sections:
Customize error messages¶
You can customize error messages by creating a custom error handler.
from typing import Dict, List
from pydantic_core import ErrorDetails
from pydantic import BaseModel, HttpUrl, ValidationError
CUSTOM_MESSAGES = {
'int_parsing': 'This is not an integer! 🤦',
'url_scheme': 'Hey, use the right URL scheme! I wanted {expected_schemes}.',
}
def convert_errors(
e: ValidationError, custom_messages: Dict[str, str]
) -> List[ErrorDetails]:
new_errors: List[ErrorDetails] = []
for error in e.errors():
custom_message = custom_messages.get(error['type'])
if custom_message:
ctx = error.get('ctx')
error['msg'] = (
custom_message.format(**ctx) if ctx else custom_message
)
new_errors.append(error)
return new_errors
class Model(BaseModel):
a: int
b: HttpUrl
try:
Model(a='wrong', b='ftp://example.com')
except ValidationError as e:
errors = convert_errors(e, CUSTOM_MESSAGES)
print(errors)
"""
[
{
'type': 'int_parsing',
'loc': ('a',),
'msg': 'This is not an integer! 🤦',
'input': 'wrong',
'url': 'https://errors.pydantic.dev/2/v/int_parsing',
},
{
'type': 'url_scheme',
'loc': ('b',),
'msg': "Hey, use the right URL scheme! I wanted 'http' or 'https'.",
'input': 'ftp://example.com',
'ctx': {'expected_schemes': "'http' or 'https'"},
'url': 'https://errors.pydantic.dev/2/v/url_scheme',
},
]
"""
A common use case would be to translate error messages. For example, in the above example,
we could translate the error messages replacing the CUSTOM_MESSAGES
dictionary with a
dictionary of translations.
Another example is customizing the way that the 'loc'
value of an error is represented.
from typing import Any, Dict, List, Tuple, Union
from pydantic import BaseModel, ValidationError
def loc_to_dot_sep(loc: Tuple[Union[str, int], ...]) -> str:
path = ''
for i, x in enumerate(loc):
if isinstance(x, str):
if i > 0:
path += '.'
path += x
elif isinstance(x, int):
path += f'[{x}]'
else:
raise TypeError('Unexpected type')
return path
def convert_errors(e: ValidationError) -> List[Dict[str, Any]]:
new_errors: List[Dict[str, Any]] = e.errors()
for error in new_errors:
error['loc'] = loc_to_dot_sep(error['loc'])
return new_errors
class TestNestedModel(BaseModel):
key: str
value: str
class TestModel(BaseModel):
items: List[TestNestedModel]
data = {'items': [{'key': 'foo', 'value': 'bar'}, {'key': 'baz'}]}
try:
TestModel.model_validate(data)
except ValidationError as e:
print(e.errors()) # (1)!
"""
[
{
'type': 'missing',
'loc': ('items', 1, 'value'),
'msg': 'Field required',
'input': {'key': 'baz'},
'url': 'https://errors.pydantic.dev/2/v/missing',
}
]
"""
pretty_errors = convert_errors(e)
print(pretty_errors) # (2)!
"""
[
{
'type': 'missing',
'loc': 'items[1].value',
'msg': 'Field required',
'input': {'key': 'baz'},
'url': 'https://errors.pydantic.dev/2/v/missing',
}
]
"""
- By default,
e.errors()
produces a List of errors withloc
values that take the form of tuples. - With our custom
loc_to_dot_sep
function, we've modified the form of theloc
representation.