Skip to content

Error Handling

Pydantic will raise a ValidationError whenever it finds an error in the data it's validating.

Note

Validation code should not raise ValidationError itself, but rather raise a ValueError or AssertionError (or subclass thereof) which will be caught and used to populate ValidationError.

One exception will be raised regardless of the number of errors found, that ValidationError will contain information about all the errors and how they happened.

You can access these errors in several ways:

Method Description
e.errors() Returns a list of errors found in the input data.
e.error_count() Returns the number of errors found in errors.
e.json() Returns a JSON representation of errors.
str(e) Returns a human-readable representation of the errors.

Each error object contains:

Property Description
ctx An optional object which contains values required to render the error message.
input The input provided for validation.
loc The error's location as a list.
msg A human-readable explanation of the error.
type A computer-readable identifier of the error type.
url The URL to further information about the error.

The first item in the loc list will be the field where the error occurred, and if the field is a sub-model, subsequent items will be present to indicate the nested location of the error.

As a demonstration:

from typing import List

from pydantic import BaseModel, ValidationError, conint


class Location(BaseModel):
    lat: float = 0.1
    lng: float = 10.1


class Model(BaseModel):
    is_required: float
    gt_int: conint(gt=42)
    list_of_ints: List[int] = None
    a_float: float = None
    recursive_model: Location = None


data = dict(
    list_of_ints=['1', 2, 'bad'],
    a_float='not a float',
    recursive_model={'lat': 4.2, 'lng': 'New York'},
    gt_int=21,
)

try:
    Model(**data)
except ValidationError as e:
    print(e)
    """
    5 validation errors for Model
    is_required
      Field required [type=missing, input_value={'list_of_ints': ['1', 2,...ew York'}, 'gt_int': 21}, input_type=dict]
    gt_int
      Input should be greater than 42 [type=greater_than, input_value=21, input_type=int]
    list_of_ints.2
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='bad', input_type=str]
    a_float
      Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='not a float', input_type=str]
    recursive_model.lng
      Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='New York', input_type=str]
    """

try:
    Model(**data)
except ValidationError as e:
    print(e.errors())
    """
    [
        {
            'type': 'missing',
            'loc': ('is_required',),
            'msg': 'Field required',
            'input': {
                'list_of_ints': ['1', 2, 'bad'],
                'a_float': 'not a float',
                'recursive_model': {'lat': 4.2, 'lng': 'New York'},
                'gt_int': 21,
            },
            'url': 'https://errors.pydantic.dev/2/v/missing',
        },
        {
            'type': 'greater_than',
            'loc': ('gt_int',),
            'msg': 'Input should be greater than 42',
            'input': 21,
            'ctx': {'gt': 42},
            'url': 'https://errors.pydantic.dev/2/v/greater_than',
        },
        {
            'type': 'int_parsing',
            'loc': ('list_of_ints', 2),
            'msg': 'Input should be a valid integer, unable to parse string as an integer',
            'input': 'bad',
            'url': 'https://errors.pydantic.dev/2/v/int_parsing',
        },
        {
            'type': 'float_parsing',
            'loc': ('a_float',),
            'msg': 'Input should be a valid number, unable to parse string as a number',
            'input': 'not a float',
            'url': 'https://errors.pydantic.dev/2/v/float_parsing',
        },
        {
            'type': 'float_parsing',
            'loc': ('recursive_model', 'lng'),
            'msg': 'Input should be a valid number, unable to parse string as a number',
            'input': 'New York',
            'url': 'https://errors.pydantic.dev/2/v/float_parsing',
        },
    ]
    """

Custom Errors

In your custom data types or validators you should use ValueError or AssertionError to raise errors.

See validators for more details on use of the @validator decorator.

from pydantic import BaseModel, ValidationError, field_validator


class Model(BaseModel):
    foo: str

    @field_validator('foo')
    def value_must_equal_bar(cls, v):
        if v != 'bar':
            raise ValueError('value must be "bar"')

        return v


try:
    Model(foo='ber')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    foo
      Value error, value must be "bar" [type=value_error, input_value='ber', input_type=str]
    """
    print(e.errors())
    """
    [
        {
            'type': 'value_error',
            'loc': ('foo',),
            'msg': 'Value error, value must be "bar"',
            'input': 'ber',
            'ctx': {'error': ValueError('value must be "bar"')},
            'url': 'https://errors.pydantic.dev/2/v/value_error',
        }
    ]
    """

You can also use PydanticCustomError, to fully control the error structure:

from pydantic_core import PydanticCustomError

from pydantic import BaseModel, ValidationError, field_validator


class Model(BaseModel):
    foo: str

    @field_validator('foo')
    def value_must_equal_bar(cls, v):
        if v != 'bar':
            raise PydanticCustomError(
                'not_a_bar',
                'value is not "bar", got "{wrong_value}"',
                dict(wrong_value=v),
            )
        return v


try:
    Model(foo='ber')
except ValidationError as e:
    print(e)
    """
    1 validation error for Model
    foo
      value is not "bar", got "ber" [type=not_a_bar, input_value='ber', input_type=str]
    """

Error messages

Pydantic attempts to provide useful default error messages for validation and usage errors.

We've provided documentation for default error codes in the following sections:

Customize error messages

You can customize error messages by creating a custom error handler.

from typing import Dict, List

from pydantic_core import ErrorDetails

from pydantic import BaseModel, HttpUrl, ValidationError

CUSTOM_MESSAGES = {
    'int_parsing': 'This is not an integer! 🤦',
    'url_scheme': 'Hey, use the right URL scheme! I wanted {expected_schemes}.',
}


def convert_errors(
    e: ValidationError, custom_messages: Dict[str, str]
) -> List[ErrorDetails]:
    new_errors: List[ErrorDetails] = []
    for error in e.errors():
        custom_message = custom_messages.get(error['type'])
        if custom_message:
            ctx = error.get('ctx')
            error['msg'] = (
                custom_message.format(**ctx) if ctx else custom_message
            )
        new_errors.append(error)
    return new_errors


class Model(BaseModel):
    a: int
    b: HttpUrl


try:
    Model(a='wrong', b='ftp://example.com')
except ValidationError as e:
    errors = convert_errors(e, CUSTOM_MESSAGES)
    print(errors)
    """
    [
        {
            'type': 'int_parsing',
            'loc': ('a',),
            'msg': 'This is not an integer! 🤦',
            'input': 'wrong',
            'url': 'https://errors.pydantic.dev/2/v/int_parsing',
        },
        {
            'type': 'url_scheme',
            'loc': ('b',),
            'msg': "Hey, use the right URL scheme! I wanted 'http' or 'https'.",
            'input': 'ftp://example.com',
            'ctx': {'expected_schemes': "'http' or 'https'"},
            'url': 'https://errors.pydantic.dev/2/v/url_scheme',
        },
    ]
    """

A common use case would be to translate error messages. For example, in the above example, we could translate the error messages replacing the CUSTOM_MESSAGES dictionary with a dictionary of translations.

Another example is customizing the way that the 'loc' value of an error is represented.

from typing import Any, Dict, List, Tuple, Union

from pydantic import BaseModel, ValidationError


def loc_to_dot_sep(loc: Tuple[Union[str, int], ...]) -> str:
    path = ''
    for i, x in enumerate(loc):
        if isinstance(x, str):
            if i > 0:
                path += '.'
            path += x
        elif isinstance(x, int):
            path += f'[{x}]'
        else:
            raise TypeError('Unexpected type')
    return path


def convert_errors(e: ValidationError) -> List[Dict[str, Any]]:
    new_errors: List[Dict[str, Any]] = e.errors()
    for error in new_errors:
        error['loc'] = loc_to_dot_sep(error['loc'])
    return new_errors


class TestNestedModel(BaseModel):
    key: str
    value: str


class TestModel(BaseModel):
    items: List[TestNestedModel]


data = {'items': [{'key': 'foo', 'value': 'bar'}, {'key': 'baz'}]}

try:
    TestModel.model_validate(data)
except ValidationError as e:
    print(e.errors())  # (1)!
    """
    [
        {
            'type': 'missing',
            'loc': ('items', 1, 'value'),
            'msg': 'Field required',
            'input': {'key': 'baz'},
            'url': 'https://errors.pydantic.dev/2/v/missing',
        }
    ]
    """
    pretty_errors = convert_errors(e)
    print(pretty_errors)  # (2)!
    """
    [
        {
            'type': 'missing',
            'loc': 'items[1].value',
            'msg': 'Field required',
            'input': {'key': 'baz'},
            'url': 'https://errors.pydantic.dev/2/v/missing',
        }
    ]
    """
  1. By default, e.errors() produces a List of errors with loc values that take the form of tuples.
  2. With our custom loc_to_dot_sep function, we've modified the form of the loc representation.