Validation decorator
The validate_arguments
decorator allows the arguments passed to a function to be parsed and validated using
the function's annotations before the function is called. While under the hood this uses the same approach of model
creation and initialisation; it provides an extremely easy way to apply validation to your code with minimal
boilerplate.
In Beta
The validate_arguments
decorator is in beta, it has been added to pydantic in v1.5 on a
provisional basis. It may change significantly in future releases and its interface will not be concrete
until v2. Feedback from the community while it's still provisional would be extremely useful; either comment
on #1205 or create a new issue.
Example of usage:
from pydantic import validate_arguments, ValidationError
@validate_arguments
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
b = s.encode()
return separator.join(b for _ in range(count))
a = repeat('hello', 3)
print(a)
#> b'hellohellohello'
b = repeat('x', '4', separator=' ')
print(b)
#> b'x x x x'
try:
c = repeat('hello', 'wrong')
except ValidationError as exc:
print(exc)
"""
1 validation error for Repeat
count
value is not a valid integer (type=type_error.integer)
"""
(This script is complete, it should run "as is")
Argument Types¶
Argument types are inferred from type annotations on the function, arguments without a type decorator are considered
as Any
. Since validate_arguments
internally uses a standard BaseModel
, all types listed in
types can be validated, including pydantic models and custom types.
As with the rest of pydantic, types can be coerced by the decorator before they're passed to the actual function:
import os
from pathlib import Path
from typing import Pattern, Optional
from pydantic import validate_arguments, DirectoryPath
@validate_arguments
def find_file(path: DirectoryPath, regex: Pattern, max=None) -> Optional[Path]:
for i, f in enumerate(path.glob('**/*')):
if max and i > max:
return
if f.is_file() and regex.fullmatch(str(f.relative_to(path))):
return f
# note: this_dir is a string here
this_dir = os.path.dirname(__file__)
print(find_file(this_dir, '^validation.*'))
#> /home/runner/work/pydantic/pydantic/docs/examples/validation_decorator_valida
#> te.py
print(find_file(this_dir, '^foobar.*', max=3))
#> None
import os
from pathlib import Path
from typing import Optional
from re import Pattern
from pydantic import validate_arguments, DirectoryPath
@validate_arguments
def find_file(path: DirectoryPath, regex: Pattern, max=None) -> Optional[Path]:
for i, f in enumerate(path.glob('**/*')):
if max and i > max:
return
if f.is_file() and regex.fullmatch(str(f.relative_to(path))):
return f
# note: this_dir is a string here
this_dir = os.path.dirname(__file__)
print(find_file(this_dir, '^validation.*'))
#> /home/runner/work/pydantic/pydantic/docs/.tmp_examples/upgraded/validation_de
#> corator_types_3_9.py
print(find_file(this_dir, '^foobar.*', max=3))
#> None
import os
from pathlib import Path
from re import Pattern
from pydantic import validate_arguments, DirectoryPath
@validate_arguments
def find_file(path: DirectoryPath, regex: Pattern, max=None) -> Path | None:
for i, f in enumerate(path.glob('**/*')):
if max and i > max:
return
if f.is_file() and regex.fullmatch(str(f.relative_to(path))):
return f
# note: this_dir is a string here
this_dir = os.path.dirname(__file__)
print(find_file(this_dir, '^validation.*'))
#> /home/runner/work/pydantic/pydantic/docs/.tmp_examples/upgraded/validation_de
#> corator_types_3_9.py
print(find_file(this_dir, '^foobar.*', max=3))
#> None
(This script is complete, it should run "as is")
A few notes:
- though they're passed as strings,
path
andregex
are converted to aPath
object and regex respectively by the decorator max
has no type annotation, so will be considered asAny
by the decorator
Type coercion like this can be extremely helpful but also confusing or not desired,
see below for a discussion of validate_arguments
's limitations in this regard.
Function Signatures¶
The decorator is designed to work with functions using all possible parameter configurations and all possible combinations of these:
- positional or keyword arguments with or without defaults
- variable positional arguments defined via
*
(often*args
) - variable keyword arguments defined via
**
(often**kwargs
) - keyword only arguments - arguments after
*,
- positional only arguments - arguments before
, /
(new in Python 3.8)
To demonstrate all the above parameter types:
from pydantic import validate_arguments
@validate_arguments
def pos_or_kw(a: int, b: int = 2) -> str:
return f'a={a} b={b}'
print(pos_or_kw(1))
#> a=1 b=2
print(pos_or_kw(a=1))
#> a=1 b=2
print(pos_or_kw(1, 3))
#> a=1 b=3
print(pos_or_kw(a=1, b=3))
#> a=1 b=3
@validate_arguments
def kw_only(*, a: int, b: int = 2) -> str:
return f'a={a} b={b}'
print(kw_only(a=1))
#> a=1 b=2
print(kw_only(a=1, b=3))
#> a=1 b=3
@validate_arguments
def pos_only(a: int, b: int = 2, /) -> str: # python 3.8 only
return f'a={a} b={b}'
print(pos_only(1))
#> a=1 b=2
print(pos_only(1, 2))
#> a=1 b=2
@validate_arguments
def var_args(*args: int) -> str:
return str(args)
print(var_args(1))
#> (1,)
print(var_args(1, 2))
#> (1, 2)
print(var_args(1, 2, 3))
#> (1, 2, 3)
@validate_arguments
def var_kwargs(**kwargs: int) -> str:
return str(kwargs)
print(var_kwargs(a=1))
#> {'a': 1}
print(var_kwargs(a=1, b=2))
#> {'a': 1, 'b': 2}
@validate_arguments
def armageddon(
a: int,
/, # python 3.8 only
b: int,
c: int = None,
*d: int,
e: int,
f: int = None,
**g: int,
) -> str:
return f'a={a} b={b} c={c} d={d} e={e} f={f} g={g}'
print(armageddon(1, 2, e=3))
#> a=1 b=2 c=None d=() e=3 f=None g={}
print(armageddon(1, 2, 3, 4, 5, 6, e=8, f=9, g=10, spam=11))
#> a=1 b=2 c=3 d=(4, 5, 6) e=8 f=9 g={'g': 10, 'spam': 11}
(This script is complete, it should run "as is")
Using Field to describe function arguments¶
Field can also be used with validate_arguments
to provide extra information about
the field and validations. In general it should be used in a type hint with
Annotated, unless default_factory
is specified, in which case it should be used
as the default value of the field:
from datetime import datetime
from pydantic import validate_arguments, Field, ValidationError
from pydantic.typing import Annotated
@validate_arguments
def how_many(num: Annotated[int, Field(gt=10)]):
return num
try:
how_many(1)
except ValidationError as e:
print(e)
"""
1 validation error for HowMany
num
ensure this value is greater than 10 (type=value_error.number.not_gt;
limit_value=10)
"""
@validate_arguments
def when(dt: datetime = Field(default_factory=datetime.now)):
return dt
print(type(when()))
#> <class 'datetime.datetime'>
(This script is complete, it should run "as is")
The alias can be used with the decorator as normal.
from pydantic import Field, validate_arguments
from pydantic.typing import Annotated
@validate_arguments
def how_many(num: Annotated[int, Field(gt=10, alias='number')]):
return num
how_many(number=42)
(This script is complete, it should run "as is")
Usage with mypy¶
The validate_arguments
decorator should work "out of the box" with mypy since it's
defined to return a function with the same signature as the function it decorates. The only limitation is that
since we trick mypy into thinking the function returned by the decorator is the same as the function being
decorated; access to the raw function or other attributes will require type: ignore
.
Validate without calling the function¶
By default, arguments validation is done by directly calling the decorated function with parameters.
But what if you wanted to validate them without actually calling the function?
To do that you can call the validate
method bound to the decorated function.
from pydantic import validate_arguments, ValidationError
@validate_arguments
def slow_sum(a: int, b: int) -> int:
print(f'Called with a={a}, b={b}')
#> Called with a=1, b=1
return a + b
slow_sum(1, 1)
slow_sum.validate(2, 2)
try:
slow_sum.validate(1, 'b')
except ValidationError as exc:
print(exc)
"""
1 validation error for SlowSum
b
value is not a valid integer (type=type_error.integer)
"""
(This script is complete, it should run "as is")
Raw function¶
The raw function which was decorated is accessible, this is useful if in some scenarios you trust your input arguments and want to call the function in the most performant way (see notes on performance below):
from pydantic import validate_arguments
@validate_arguments
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
b = s.encode()
return separator.join(b for _ in range(count))
a = repeat('hello', 3)
print(a)
#> b'hellohellohello'
b = repeat.raw_function('good bye', 2, separator=b', ')
print(b)
#> b'good bye, good bye'
(This script is complete, it should run "as is")
Async Functions¶
validate_arguments
can also be used on async functions:
import asyncio
from pydantic import PositiveInt, ValidationError, validate_arguments
@validate_arguments
async def get_user_email(user_id: PositiveInt):
# `conn` is some fictional connection to a database
email = await conn.execute('select email from users where id=$1', user_id)
if email is None:
raise RuntimeError('user not found')
else:
return email
async def main():
email = await get_user_email(123)
print(email)
#> [email protected]
try:
await get_user_email(-4)
except ValidationError as exc:
print(exc.errors())
"""
[
{
'loc': ('user_id',),
'msg': 'ensure this value is greater than 0',
'type': 'value_error.number.not_gt',
'ctx': {'limit_value': 0},
},
]
"""
asyncio.run(main())
(This script requires conn.execute()
that will return '[email protected]'
)
Custom Config¶
The model behind validate_arguments
can be customised using a config setting which is equivalent to
setting the Config
sub-class in normal models.
Warning
The fields
and alias_generator
properties of Config
which allow aliases to be configured are not supported
yet with @validate_arguments
, using them will raise an error.
Configuration is set using the config
keyword argument to the decorator, it may be either a config class
or a dict of properties which are converted to a class later.
from pydantic import ValidationError, validate_arguments
class Foobar:
def __init__(self, v: str):
self.v = v
def __add__(self, other: 'Foobar') -> str:
return f'{self} + {other}'
def __str__(self) -> str:
return f'Foobar({self.v})'
@validate_arguments(config=dict(arbitrary_types_allowed=True))
def add_foobars(a: Foobar, b: Foobar):
return a + b
c = add_foobars(Foobar('a'), Foobar('b'))
print(c)
#> Foobar(a) + Foobar(b)
try:
add_foobars(1, 2)
except ValidationError as e:
print(e)
"""
2 validation errors for AddFoobars
a
instance of Foobar expected (type=type_error.arbitrary_type;
expected_arbitrary_type=Foobar)
b
instance of Foobar expected (type=type_error.arbitrary_type;
expected_arbitrary_type=Foobar)
"""
(This script is complete, it should run "as is")
Limitations¶
validate_arguments
has been released on a provisional basis without all the bells and whistles, which may
be added later, see #1205 for some more discussion of this.
In particular:
Validation Exception¶
Currently upon validation failure, a standard pydantic ValidationError
is raised,
see model error handling.
This is helpful since it's str()
method provides useful details of the error which occurred and methods like
.errors()
and .json()
can be useful when exposing the errors to end users, however ValidationError
inherits
from ValueError
not TypeError
which may be unexpected since Python would raise a TypeError
upon invalid
or missing arguments. This may be addressed in future by either allow a custom error or raising a different
exception by default, or both.
Coercion and Strictness¶
pydantic currently leans on the side of trying to coerce types rather than raise an error if a type is wrong,
see model data conversion and validate_arguments
is no different.
See #1098 and other issues with the "strictness" label
for a discussion of this. If pydantic gets a "strict" mode in future, validate_arguments
will have an option
to use this, it may even become the default for the decorator.
Performance¶
We've made a big effort to make pydantic as performant as possible
and argument inspect and model creation is only performed once when the function is defined, however
there will still be a performance impact to using the validate_arguments
decorator compared to
calling the raw function.
In many situations this will have little or no noticeable effect, however be aware that
validate_arguments
is not an equivalent or alternative to function definitions in strongly typed languages;
it never will be.
Return Value¶
The return value of the function is not validated against its return type annotation, this may be added as an option in future.
Config and Validators¶
fields
and alias_generator
on custom Config
are not supported, see above.
Neither are validators.
Model fields and reserved arguments¶
The following names may not be used by arguments since they can be used internally to store information about the function's signature:
v__args
v__kwargs
v__positional_only
These names (together with "args"
and "kwargs"
) may or may not (depending on the function's signature) appear as
fields on the internal pydantic model accessible via .model
thus this model isn't especially useful
(e.g. for generating a schema) at the moment.
This should be fixable in future as the way error are raised is changed.