Logfire
Logfire is the observability tool focused on developer experience.
Logfire ¶
Logfire(
*,
config: LogfireConfig = GLOBAL_CONFIG,
sample_rate: float | None = None,
tags: Sequence[str] = (),
console_log: bool = True,
otel_scope: str = "logfire"
)
The main logfire class.
Source code in logfire/_internal/main.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
trace ¶
trace(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log a trace message.
import logfire
logfire.configure()
logfire.trace('This is a trace log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
debug ¶
debug(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log a debug message.
import logfire
logfire.configure()
logfire.debug('This is a debug log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
info ¶
info(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log an info message.
import logfire
logfire.configure()
logfire.info('This is an info log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
notice ¶
notice(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log a notice message.
import logfire
logfire.configure()
logfire.notice('This is a notice log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
warn ¶
warn(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log a warning message.
import logfire
logfire.configure()
logfire.warn('This is a warning log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
error ¶
error(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log an error message.
import logfire
logfire.configure()
logfire.error('This is an error log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
fatal ¶
fatal(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = False,
**attributes: Any,
) -> None
Log a fatal message.
import logfire
logfire.configure()
logfire.fatal('This is a fatal log')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
Source code in logfire/_internal/main.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
exception ¶
exception(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_exc_info: ExcInfo = True,
**attributes: Any,
) -> None
The same as error
but with _exc_info=True
by default.
This means that a traceback will be logged for any currently handled exception.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The message to log. |
required |
|
Any
|
The attributes to bind to the log. |
{}
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by |
True
|
Source code in logfire/_internal/main.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
span ¶
span(
msg_template: str,
/,
*,
_tags: Sequence[str] | None = None,
_span_name: str | None = None,
_level: LevelName | None = None,
**attributes: Any,
) -> LogfireSpan
Context manager for creating a span.
import logfire
logfire.configure()
with logfire.span('This is a span {a=}', a='data'):
logfire.info('new log 1')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The template for the span message. |
required |
|
str | None
|
The span name. If not provided, the |
None
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the span. |
None
|
|
LevelName | None
|
An optional log level name. |
None
|
|
Any
|
The arguments to include in the span and format the message template with. Attributes starting with an underscore are not allowed. |
{}
|
Source code in logfire/_internal/main.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
instrument ¶
instrument(
msg_template: LiteralString | None = None,
*,
span_name: str | None = None,
extract_args: bool = True
) -> Callable[[Callable[P, R]], Callable[P, R]]
Decorator for instrumenting a function as a span.
import logfire
logfire.configure()
@logfire.instrument('This is a span {a=}')
def my_function(a: int):
logfire.info('new log {a=}', a=a)
Note
- This decorator MUST be applied first, i.e. UNDER any other decorators.
- The source code of the function MUST be accessible.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
LiteralString | None
|
The template for the span message. If not provided, the module and function name will be used. |
None
|
|
str | None
|
The span name. If not provided, the |
None
|
|
bool
|
Whether to extract arguments from the function signature and log them as span attributes. |
True
|
Source code in logfire/_internal/main.py
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
log ¶
log(
level: LevelName | int,
msg_template: str,
attributes: dict[str, Any] | None = None,
tags: Sequence[str] | None = None,
exc_info: ExcInfo = False,
console_log: bool | None = None,
) -> None
Log a message.
import logfire
logfire.configure()
logfire.log('info', 'This is a log {a}', {'a': 'Apple'})
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
LevelName | int
|
The level of the log. |
required |
|
str
|
The message to log. |
required |
|
dict[str, Any] | None
|
The attributes to bind to the log. |
None
|
|
Sequence[str] | None
|
An optional sequence of tags to include in the log. |
None
|
|
ExcInfo
|
Set to an exception or a tuple as returned by Set to |
False
|
|
bool | None
|
Whether to log to the console, defaults to |
None
|
Source code in logfire/_internal/main.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
|
with_tags ¶
A new Logfire instance which always uses the given tags.
import logfire
logfire.configure()
local_logfire = logfire.with_tags('tag1')
local_logfire.info('a log message', _tags=['tag2'])
# This is equivalent to:
logfire.info('a log message', _tags=['tag1', 'tag2'])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The tags to add. |
()
|
Returns:
Type | Description |
---|---|
Logfire
|
A new Logfire instance with the |
Source code in logfire/_internal/main.py
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
|
with_settings ¶
with_settings(
*,
tags: Sequence[str] = (),
stack_offset: int | None = None,
console_log: bool | None = None,
custom_scope_suffix: str | None = None
) -> Logfire
A new Logfire instance which uses the given settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Sequence[str]
|
Sequence of tags to include in the log. |
()
|
|
int | None
|
The stack level offset to use when collecting stack info, also affects the warning which
message formatting might emit, defaults to |
None
|
|
bool | None
|
Whether to log to the console, defaults to |
None
|
|
str | None
|
A custom suffix to append to It should only be used when instrumenting another library with Logfire, such as structlog or loguru. See the |
None
|
Returns:
Type | Description |
---|---|
Logfire
|
A new Logfire instance with the given settings applied. |
Source code in logfire/_internal/main.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
|
force_flush ¶
force_flush(timeout_millis: int = 3000) -> bool
Force flush all spans and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
The timeout in milliseconds. |
3000
|
Returns:
Type | Description |
---|---|
bool
|
Whether the flush of spans was successful. |
Source code in logfire/_internal/main.py
734 735 736 737 738 739 740 741 742 743 |
|
log_slow_async_callbacks ¶
log_slow_async_callbacks(
slow_duration: float = 0.1,
) -> ContextManager[None]
Log a warning whenever a function running in the asyncio event loop blocks for too long.
This works by patching the asyncio.events.Handle._run
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
float
|
the threshold in seconds for when a callback is considered slow. |
0.1
|
Returns:
Type | Description |
---|---|
ContextManager[None]
|
A context manager that will revert the patch when exited. This context manager doesn't take into account threads or other concurrency. Calling this method will immediately apply the patch without waiting for the context manager to be opened, i.e. it's not necessary to use this as a context manager. |
Source code in logfire/_internal/main.py
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
|
install_auto_tracing ¶
install_auto_tracing(
modules: (
Sequence[str] | Callable[[AutoTraceModule], bool]
),
*,
check_imported_modules: Literal[
"error", "warn", "ignore"
] = "error",
min_duration: float = 0
) -> None
Install automatic tracing.
This will trace all non-generator function calls in the modules specified by the modules argument.
It's equivalent to wrapping the body of every function in matching modules in with logfire.span(...):
.
Note
This function MUST be called before any of the modules to be traced are imported.
Generator functions will not be traced for reasons explained here.
This works by inserting a new meta path finder into sys.meta_path
, so inserting another finder before it
may prevent it from working.
It relies on being able to retrieve the source code via at least one other existing finder in the meta path, so it may not work if standard finders are not present or if the source code is not available. A modified version of the source code is then compiled and executed in place of the original module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Sequence[str] | Callable[[AutoTraceModule], bool]
|
List of module names to trace, or a function which returns True for modules that should be traced. If a list is provided, any submodules within a given module will also be traced. |
required |
|
Literal['error', 'warn', 'ignore']
|
If this is |
'error'
|
|
float
|
An optional minimum duration in seconds for which a function must run before it's traced.
The default is |
0
|
Source code in logfire/_internal/main.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
|
instrument_fastapi ¶
instrument_fastapi(
app: FastAPI,
*,
capture_headers: bool = False,
request_attributes_mapper: (
Callable[
[Request | WebSocket, dict[str, Any]],
dict[str, Any] | None,
]
| None
) = None,
use_opentelemetry_instrumentation: bool = True,
excluded_urls: str | Iterable[str] | None = None,
record_send_receive: bool = False,
**opentelemetry_kwargs: Any
) -> ContextManager[None]
Instrument a FastAPI app so that spans and logs are automatically created for each request.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
FastAPI
|
The FastAPI app to instrument. |
required |
|
bool
|
Set to |
False
|
|
Callable[[Request | WebSocket, dict[str, Any]], dict[str, Any] | None] | None
|
A function that takes a
The returned dictionary will be used as the attributes for a log message.
If You can use this to e.g. only log validation errors, or nothing at all. You can also add custom attributes. The default implementation will return the input dictionary unchanged.
The function mustn't modify the contents of |
None
|
|
str | Iterable[str] | None
|
A string of comma-separated regexes which will exclude a request from tracing if the full URL
matches any of the regexes. This applies to both the Logfire and OpenTelemetry instrumentation.
If not provided, the environment variables
|
None
|
|
bool
|
If True (the default) then
|
True
|
|
bool
|
Set to True to allow the OpenTelemetry ASGI to create send/receive spans. These are disabled by default to reduce overhead and the number of spans created, since many can be created for a single request, and they are not often useful. If enabled, they will be set to debug level, meaning they will usually still be hidden in the UI. |
False
|
|
Any
|
Additional keyword arguments to pass to the OpenTelemetry FastAPI instrumentation. |
{}
|
Returns:
Type | Description |
---|---|
ContextManager[None]
|
A context manager that will revert the instrumentation when exited. This context manager doesn't take into account threads or other concurrency. Calling this method will immediately apply the instrumentation without waiting for the context manager to be opened, i.e. it's not necessary to use this as a context manager. |
Source code in logfire/_internal/main.py
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
|
instrument_openai ¶
instrument_openai(
openai_client: (
OpenAI
| AsyncOpenAI
| type[OpenAI]
| type[AsyncOpenAI]
| None
) = None,
*,
suppress_other_instrumentation: bool = True
) -> ContextManager[None]
Instrument an OpenAI client so that spans are automatically created for each request.
The following methods are instrumented for both the sync and the async clients:
client.chat.completions.create
— with and withoutstream=True
client.completions.create
— with and withoutstream=True
client.embeddings.create
client.images.generate
When stream=True
a second span is created to instrument the streamed response.
Example usage:
import logfire
import openai
client = openai.OpenAI()
logfire.configure()
logfire.instrument_openai(client)
response = client.chat.completions.create(
model='gpt-4',
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': 'What is four plus five?'},
],
)
print('answer:', response.choices[0].message.content)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
OpenAI | AsyncOpenAI | type[OpenAI] | type[AsyncOpenAI] | None
|
The OpenAI client or class to instrument:
|
None
|
|
bool
|
If True, suppress any other OTEL instrumentation that may be otherwise enabled. In reality, this means the HTTPX instrumentation, which could otherwise be called since OpenAI uses HTTPX to make HTTP requests. |
True
|
Returns:
Type | Description |
---|---|
ContextManager[None]
|
A context manager that will revert the instrumentation when exited. Use of this context manager is optional. |
Source code in logfire/_internal/main.py
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
|
instrument_anthropic ¶
instrument_anthropic(
anthropic_client: (
Anthropic
| AsyncAnthropic
| type[Anthropic]
| type[AsyncAnthropic]
| None
) = None,
*,
suppress_other_instrumentation: bool = True
) -> ContextManager[None]
Instrument an Anthropic client so that spans are automatically created for each request.
The following methods are instrumented for both the sync and the async clients:
When stream=True
a second span is created to instrument the streamed response.
Example usage:
import logfire
import anthropic
client = anthropic.Anthropic()
logfire.configure()
logfire.instrument_anthropic(client)
response = client.messages.create(
model='claude-3-haiku-20240307',
system='You are a helpful assistant.',
messages=[
{'role': 'user', 'content': 'What is four plus five?'},
],
)
print('answer:', response.content[0].text)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Anthropic | AsyncAnthropic | type[Anthropic] | type[AsyncAnthropic] | None
|
The Anthropic client or class to instrument:
|
None
|
|
bool
|
If True, suppress any other OTEL instrumentation that may be otherwise enabled. In reality, this means the HTTPX instrumentation, which could otherwise be called since OpenAI uses HTTPX to make HTTP requests. |
True
|
Returns:
Type | Description |
---|---|
ContextManager[None]
|
A context manager that will revert the instrumentation when exited. Use of this context manager is optional. |
Source code in logfire/_internal/main.py
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
|
instrument_asyncpg ¶
instrument_asyncpg(
**kwargs: Unpack[AsyncPGInstrumentKwargs],
) -> None
Instrument the asyncpg
module so that spans are automatically created for each query.
Source code in logfire/_internal/main.py
1024 1025 1026 1027 1028 1029 |
|
instrument_httpx ¶
instrument_httpx(
**kwargs: Unpack[HTTPXInstrumentKwargs],
) -> None
Instrument the httpx
module so that spans are automatically created for each request.
Uses the
OpenTelemetry HTTPX Instrumentation
library, specifically HTTPXClientInstrumentor().instrument()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
|
instrument_celery ¶
instrument_celery(
**kwargs: Unpack[CeleryInstrumentKwargs],
) -> None
Instrument celery
so that spans are automatically created for each task.
Uses the OpenTelemetry Celery Instrumentation library.
Source code in logfire/_internal/main.py
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
|
instrument_django ¶
instrument_django(
capture_headers: bool = False,
is_sql_commentor_enabled: bool | None = None,
request_hook: (
Callable[[Span, HttpRequest], None] | None
) = None,
response_hook: (
Callable[[Span, HttpRequest, HttpResponse], None]
| None
) = None,
excluded_urls: str | None = None,
**kwargs: Any,
) -> None
Instrument django
so that spans are automatically created for each web request.
Uses the OpenTelemetry Django Instrumentation library.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
bool
|
Set to |
False
|
|
bool | None
|
Adds comments to SQL queries performed by Django, so that database logs have additional context. This does NOT create spans/logs for the queries themselves.
For that you need to instrument the database driver, e.g. with To configure the SQL Commentor, see the OpenTelemetry documentation for the
values that need to be added to |
None
|
|
Callable[[Span, HttpRequest], None] | None
|
A function called right after a span is created for a request.
The function should accept two arguments: the span and the Django |
None
|
|
Callable[[Span, HttpRequest, HttpResponse], None] | None
|
A function called right before a span is finished for the response.
The function should accept three arguments:
the span, the Django |
None
|
|
str | None
|
A string containing a comma-delimited list of regexes used to exclude URLs from tracking. |
None
|
|
Any
|
Additional keyword arguments to pass to the OpenTelemetry |
{}
|
Source code in logfire/_internal/main.py
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 |
|
instrument_requests ¶
instrument_requests(
excluded_urls: str | None = None, **kwargs: Any
) -> None
Instrument the requests
module so that spans are automatically created for each request.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str | None
|
A string containing a comma-delimited list of regexes used to exclude URLs from tracking |
None
|
|
Any
|
Additional keyword arguments to pass to the OpenTelemetry |
{}
|
Source code in logfire/_internal/main.py
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
|
instrument_psycopg ¶
instrument_psycopg(
conn_or_module: Any = None,
**kwargs: Unpack[PsycopgInstrumentKwargs],
) -> None
Instrument a psycopg
connection or module so that spans are automatically created for each query.
Uses the OpenTelemetry instrumentation libraries for
psycopg
and
psycopg2
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Any
|
Can be:
|
None
|
|
Unpack[PsycopgInstrumentKwargs]
|
Additional keyword arguments to pass to the OpenTelemetry |
{}
|
Source code in logfire/_internal/main.py
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
|
instrument_flask ¶
instrument_flask(
app: Flask,
*,
capture_headers: bool = False,
**kwargs: Unpack[FlaskInstrumentKwargs]
) -> None
Instrument app
so that spans are automatically created for each request.
Set capture_headers
to True
to capture all request and response headers.
Uses the
OpenTelemetry Flask Instrumentation
library, specifically FlaskInstrumentor().instrument_app()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
|
instrument_starlette ¶
instrument_starlette(
app: Starlette,
*,
capture_headers: bool = False,
record_send_receive: bool = False,
**kwargs: Unpack[StarletteInstrumentKwargs]
) -> None
Instrument app
so that spans are automatically created for each request.
Set capture_headers
to True
to capture all request and response headers.
Set record_send_receive
to True
to allow the OpenTelemetry ASGI to create send/receive spans.
These are disabled by default to reduce overhead and the number of spans created,
since many can be created for a single request, and they are not often useful.
If enabled, they will be set to debug level, meaning they will usually still be hidden in the UI.
Uses the
OpenTelemetry Starlette Instrumentation
library, specifically StarletteInstrumentor.instrument_app()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 |
|
instrument_aiohttp_client ¶
instrument_aiohttp_client(**kwargs: Any) -> None
Instrument the aiohttp
module so that spans are automatically created for each client request.
Uses the
OpenTelemetry aiohttp client Instrumentation
library, specifically AioHttpClientInstrumentor().instrument()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 |
|
instrument_sqlalchemy ¶
instrument_sqlalchemy(
**kwargs: Unpack[SQLAlchemyInstrumentKwargs],
) -> None
Instrument the sqlalchemy
module so that spans are automatically created for each query.
Uses the
OpenTelemetry SQLAlchemy Instrumentation
library, specifically SQLAlchemyInstrumentor().instrument()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
|
instrument_pymongo ¶
instrument_pymongo(
**kwargs: Unpack[PymongoInstrumentKwargs],
) -> None
Instrument the pymongo
module so that spans are automatically created for each operation.
Uses the
OpenTelemetry pymongo Instrumentation
library, specifically PymongoInstrumentor().instrument()
, to which it passes **kwargs
.
Source code in logfire/_internal/main.py
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
|
instrument_redis ¶
instrument_redis(
capture_statement: bool = False,
**kwargs: Unpack[RedisInstrumentKwargs],
) -> None
Instrument the redis
module so that spans are automatically created for each operation.
Uses the
OpenTelemetry Redis Instrumentation
library, specifically RedisInstrumentor().instrument()
, to which it passes **kwargs
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
bool
|
Set to |
False
|
|
Unpack[RedisInstrumentKwargs]
|
Additional keyword arguments to pass to the OpenTelemetry |
{}
|
Source code in logfire/_internal/main.py
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
|
instrument_mysql ¶
instrument_mysql(
conn: MySQLConnection = None,
**kwargs: Unpack[MySQLInstrumentKwargs],
) -> MySQLConnection
Instrument the mysql
module or a specific MySQL connection so that spans are automatically created for each operation.
Uses the OpenTelemetry MySQL Instrumentation library.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
MySQLConnection
|
The |
None
|
|
Unpack[MySQLInstrumentKwargs]
|
Additional keyword arguments to pass to the OpenTelemetry |
{}
|
Returns:
Type | Description |
---|---|
MySQLConnection
|
If a connection is provided, returns the instrumented connection. If no connection is provided, returns None. |
Source code in logfire/_internal/main.py
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 |
|
instrument_system_metrics ¶
Collect system metrics.
See the guide for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Config | None
|
A dictionary where the keys are metric names and the values are optional further configuration for that metric. |
None
|
|
Base
|
A string indicating the base config dictionary which |
'basic'
|
Source code in logfire/_internal/main.py
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 |
|
metric_counter ¶
Create a counter metric.
A counter is a cumulative metric that represents a single numerical value that only ever goes up.
import logfire
logfire.configure()
counter = logfire.metric_counter('exceptions', unit='1', description='Number of exceptions caught')
try:
raise Exception('oops')
except Exception:
counter.add(1)
See the Opentelemetry documentation about counters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Returns:
Type | Description |
---|---|
Counter
|
The counter metric. |
Source code in logfire/_internal/main.py
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 |
|
metric_histogram ¶
Create a histogram metric.
A histogram is a metric that samples observations (usually things like request durations or response sizes).
import logfire
logfire.configure()
histogram = logfire.metric_histogram('bank.amount_transferred', unit='$', description='Amount transferred')
def transfer(amount: int):
histogram.record(amount)
See the Opentelemetry documentation about
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Returns:
Type | Description |
---|---|
Histogram
|
The histogram metric. |
Source code in logfire/_internal/main.py
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 |
|
metric_gauge ¶
Create a gauge metric.
Gauge is a synchronous instrument which can be used to record non-additive measurements.
import logfire
logfire.configure()
gauge = logfire.metric_gauge('system.cpu_usage', unit='%', description='CPU usage')
def update_cpu_usage(cpu_percent):
gauge.set(cpu_percent)
See the Opentelemetry documentation about gauges.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Returns:
Type | Description |
---|---|
_Gauge
|
The gauge metric. |
Source code in logfire/_internal/main.py
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 |
|
metric_up_down_counter ¶
metric_up_down_counter(
name: str, *, unit: str = "", description: str = ""
) -> UpDownCounter
Create an up-down counter metric.
An up-down counter is a cumulative metric that represents a single numerical value that can be adjusted up or down.
import logfire
logfire.configure()
up_down_counter = logfire.metric_up_down_counter('users.logged_in', unit='1', description='Users logged in')
def on_login(user):
up_down_counter.add(1)
def on_logout(user):
up_down_counter.add(-1)
See the Opentelemetry documentation about up-down counters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Returns:
Type | Description |
---|---|
UpDownCounter
|
The up-down counter metric. |
Source code in logfire/_internal/main.py
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 |
|
metric_counter_callback ¶
metric_counter_callback(
name: str,
*,
callbacks: Sequence[CallbackT],
unit: str = "",
description: str = ""
) -> None
Create a counter metric that uses a callback to collect observations.
The counter metric is a cumulative metric that represents a single numerical value that only ever goes up.
import logfire
import psutil
from opentelemetry.metrics import CallbackOptions, Observation
logfire.configure()
def cpu_usage_callback(options: CallbackOptions):
cpu_percents = psutil.cpu_percent(percpu=True)
for i, cpu_percent in enumerate(cpu_percents):
yield Observation(cpu_percent, {'cpu': i})
cpu_usage_counter = logfire.metric_counter_callback(
'system.cpu.usage',
callbacks=[cpu_usage_callback],
unit='%',
description='CPU usage',
)
See the Opentelemetry documentation about asynchronous counter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
Sequence[CallbackT]
|
A sequence of callbacks that return an iterable of Observation. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Source code in logfire/_internal/main.py
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 |
|
metric_gauge_callback ¶
metric_gauge_callback(
name: str,
callbacks: Sequence[CallbackT],
*,
unit: str = "",
description: str = ""
) -> None
Create a gauge metric that uses a callback to collect observations.
The gauge metric is a metric that represents a single numerical value that can arbitrarily go up and down.
import threading
import logfire
from opentelemetry.metrics import CallbackOptions, Observation
logfire.configure()
def thread_count_callback(options: CallbackOptions):
yield Observation(threading.active_count())
logfire.metric_gauge_callback(
'system.thread_count',
callbacks=[thread_count_callback],
unit='1',
description='Number of threads',
)
See the Opentelemetry documentation about asynchronous gauge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
Sequence[CallbackT]
|
A sequence of callbacks that return an iterable of Observation. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Source code in logfire/_internal/main.py
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 |
|
metric_up_down_counter_callback ¶
metric_up_down_counter_callback(
name: str,
callbacks: Sequence[CallbackT],
*,
unit: str = "",
description: str = ""
) -> None
Create an up-down counter metric that uses a callback to collect observations.
The up-down counter is a cumulative metric that represents a single numerical value that can be adjusted up or down.
import logfire
from opentelemetry.metrics import CallbackOptions, Observation
logfire.configure()
items = []
def inventory_callback(options: CallbackOptions):
yield Observation(len(items))
logfire.metric_up_down_counter_callback(
name='store.inventory',
description='Number of items in the inventory',
callbacks=[inventory_callback],
)
See the Opentelemetry documentation about asynchronous up-down counters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the metric. |
required |
|
Sequence[CallbackT]
|
A sequence of callbacks that return an iterable of Observation. |
required |
|
str
|
The unit of the metric. |
''
|
|
str
|
The description of the metric. |
''
|
Source code in logfire/_internal/main.py
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
|
shutdown ¶
shutdown(
timeout_millis: int = 30000, flush: bool = True
) -> bool
Shut down all tracers and meters.
This will clean up any resources used by the tracers and meters and flush any remaining spans and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
The timeout in milliseconds. |
30000
|
|
bool
|
Whether to flush remaining spans and metrics before shutting down. |
True
|
Returns:
Type | Description |
---|---|
bool
|
|
Source code in logfire/_internal/main.py
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 |
|
Logfire is the observability tool focused on developer experience.
METRICS_PREFERRED_TEMPORALITY
module-attribute
¶
METRICS_PREFERRED_TEMPORALITY = {
Counter: DELTA,
UpDownCounter: CUMULATIVE,
Histogram: DELTA,
ObservableCounter: DELTA,
ObservableUpDownCounter: CUMULATIVE,
ObservableGauge: CUMULATIVE,
}
This should be passed as the preferred_temporality
argument of metric readers and exporters.
LevelName
module-attribute
¶
LevelName = Literal[
"trace",
"debug",
"info",
"notice",
"warn",
"warning",
"error",
"fatal",
]
Level names for records.
SamplingOptions
dataclass
¶
SamplingOptions(
head: float | Sampler = 1.0,
tail: (
Callable[[TailSamplingSpanInfo], float] | None
) = None,
)
Options for logfire.configure(sampling=...)
.
See the sampling guide.
head
class-attribute
instance-attribute
¶
Head sampling options.
If it's a float, it should be a number between 0.0 and 1.0. This is the probability that an entire trace will randomly included.
Alternatively you can pass a custom
OpenTelemetry Sampler
.
tail
class-attribute
instance-attribute
¶
tail: Callable[[TailSamplingSpanInfo], float] | None = None
An optional tail sampling callback which will be called for every span.
It should return a number between 0.0 and 1.0, the probability that the entire trace will be included.
Use SamplingOptions.level_or_duration
for a common use case.
Every span in a trace will be stored in memory until either the trace is included by tail sampling or it's completed and discarded, so large traces may consume a lot of memory.
level_or_duration
classmethod
¶
level_or_duration(
*,
head: float | Sampler = 1.0,
level_threshold: LevelName | None = "notice",
duration_threshold: float | None = 5.0,
background_rate: float = 0.0
) -> Self
Returns a SamplingOptions
instance that tail samples traces based on their log level and duration.
If a trace has at least one span/log that has a log level greater than or equal to level_threshold
,
or if the duration of the whole trace is greater than duration_threshold
seconds,
then the whole trace will be included.
Otherwise, the probability is background_rate
.
The head
parameter is the same as in the SamplingOptions
constructor.
Source code in logfire/sampling/_tail_sampling.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
AutoTraceModule
dataclass
¶
Information about a module being imported that should maybe be traced automatically.
This object will be passed to a function that should return True if the module should be traced.
In particular it'll be passed to a function that's passed to install_auto_tracing
as the modules
argument.
parts_start_with ¶
Return True if the module name starts with any of the given prefixes, using dots as boundaries.
For example, if the module name is foo.bar.spam
, then parts_start_with('foo')
will return True,
but parts_start_with('bar')
or parts_start_with('foo_bar')
will return False.
In other words, this will match the module itself or any submodules.
If a prefix contains any characters other than letters, numbers, and dots, then it will be treated as a regular expression.
Source code in logfire/_internal/auto_trace/types.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
ConsoleOptions
dataclass
¶
ConsoleOptions(
colors: ConsoleColorsValues = "auto",
span_style: Literal[
"simple", "indented", "show-parents"
] = "show-parents",
include_timestamps: bool = True,
verbose: bool = False,
min_log_level: LevelName = "info",
)
Options for controlling console output.
span_style
class-attribute
instance-attribute
¶
span_style: Literal[
"simple", "indented", "show-parents"
] = "show-parents"
How spans are shown in the console.
include_timestamps
class-attribute
instance-attribute
¶
include_timestamps: bool = True
Whether to include timestamps in the console output.
PydanticPlugin
dataclass
¶
PydanticPlugin(
record: PydanticPluginRecordValues = "off",
include: set[str] = set(),
exclude: set[str] = set(),
)
Options for the Pydantic plugin.
record
class-attribute
instance-attribute
¶
record: PydanticPluginRecordValues = 'off'
The record mode for the Pydantic plugin.
It can be one of the following values:
off
: Disable instrumentation. This is default value.all
: Send traces and metrics for all events.failure
: Send metrics for all validations and traces only for validation failures.metrics
: Send only metrics.
include
class-attribute
instance-attribute
¶
By default, third party modules are not instrumented. This option allows you to include specific modules.
LogfireSpan ¶
LogfireSpan(
span_name: str,
otlp_attributes: dict[str, AttributeValue],
tracer: Tracer,
json_schema_properties: JsonSchemaProperties,
)
Bases: ReadableSpan
Source code in logfire/_internal/main.py
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 |
|
end ¶
end() -> None
Sets the current time as the span's end time.
The span's end time is the wall time at which the operation finished.
Only the first call to this method is recorded, further calls are ignored so you can call this within the span's context manager to end it before the context manager exits.
Source code in logfire/_internal/main.py
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 |
|
set_attribute ¶
Sets an attribute on the span.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The key of the attribute. |
required |
|
Any
|
The value of the attribute. |
required |
Source code in logfire/_internal/main.py
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 |
|
set_attributes ¶
Sets the given attributes on the span.
Source code in logfire/_internal/main.py
1696 1697 1698 1699 |
|
record_exception ¶
record_exception(
exception: BaseException,
attributes: Attributes = None,
timestamp: int | None = None,
escaped: bool = False,
) -> None
Records an exception as a span event.
Delegates to the OpenTelemetry SDK Span.record_exception
method.
Source code in logfire/_internal/main.py
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 |
|
set_level ¶
Set the log level of this span.
Source code in logfire/_internal/main.py
1731 1732 1733 1734 1735 1736 1737 1738 |
|
ScrubbingOptions
dataclass
¶
ScrubbingOptions(
callback: ScrubCallback | None = None,
extra_patterns: Sequence[str] | None = None,
)
Options for redacting sensitive data.
callback
class-attribute
instance-attribute
¶
callback: ScrubCallback | None = None
A function that is called for each match found by the scrubber.
If it returns None
, the value is redacted.
Otherwise, the returned value replaces the matched value.
The function accepts a single argument of type logfire.ScrubMatch
.
extra_patterns
class-attribute
instance-attribute
¶
A sequence of regular expressions to detect sensitive data that should be redacted.
For example, the default includes 'password'
, 'secret'
, and 'api[._ -]?key'
.
The specified patterns are combined with the default patterns.
ScrubMatch
dataclass
¶
An object passed to a ScrubbingOptions.callback
function.
LogfireLoggingHandler ¶
LogfireLoggingHandler(
level: int | str = NOTSET,
fallback: Handler = StreamHandler(),
logfire_instance: Logfire | None = None,
)
Bases: Handler
A logging handler that sends logs to Logfire.
Source code in logfire/integrations/logging.py
57 58 59 60 61 62 63 64 65 66 67 |
|
emit ¶
Send the log to Logfire.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
LogRecord
|
The log record to send. |
required |
Source code in logfire/integrations/logging.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
fill_attributes ¶
Fill the attributes to send to Logfire.
This method can be overridden to add more attributes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
LogRecord
|
The log record. |
required |
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The attributes for the log record. |
Source code in logfire/integrations/logging.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
StructlogProcessor ¶
Logfire processor for structlog.
Source code in logfire/integrations/structlog.py
26 27 28 29 30 31 32 33 34 35 |
|
__call__ ¶
__call__(
logger: WrappedLogger, name: str, event_dict: EventDict
) -> EventDict
A middleware to process structlog event, and send it to Logfire.
Source code in logfire/integrations/structlog.py
37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
no_auto_trace ¶
no_auto_trace(x: T) -> T
Decorator to prevent a function/class from being traced by logfire.install_auto_tracing
.
This is useful for small functions that are called very frequently and would generate too much noise.
The decorator is detected at import time.
Only @no_auto_trace
or @logfire.no_auto_trace
are supported.
Renaming/aliasing either the function or module won't work.
Neither will calling this indirectly via another function.
Any decorated function, or any function defined anywhere inside a decorated function/class,
will be completely ignored by logfire.install_auto_tracing
.
This decorator simply returns the argument unchanged, so there is zero runtime overhead.
Source code in logfire/_internal/auto_trace/rewrite_ast.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
configure ¶
configure(
*,
send_to_logfire: (
bool | Literal["if-token-present"] | None
) = None,
token: str | None = None,
service_name: str | None = None,
service_version: str | None = None,
console: ConsoleOptions | Literal[False] | None = None,
show_summary: bool | None = None,
config_dir: Path | str | None = None,
data_dir: Path | str | None = None,
base_url: str | None = None,
id_generator: IdGenerator | None = None,
ns_timestamp_generator: Callable[[], int] | None = None,
additional_span_processors: (
Sequence[SpanProcessor] | None
) = None,
additional_metric_readers: (
Sequence[MetricReader] | None
) = None,
pydantic_plugin: PydanticPlugin | None = None,
fast_shutdown: bool = False,
scrubbing: (
ScrubbingOptions | Literal[False] | None
) = None,
inspect_arguments: bool | None = None,
sampling: SamplingOptions | None = None,
**deprecated_kwargs: Unpack[DeprecatedKwargs]
) -> None
Configure the logfire SDK.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
bool | Literal['if-token-present'] | None
|
Whether to send logs to logfire.dev. Defaults to the |
None
|
|
str | None
|
The project token. Defaults to the |
None
|
|
str | None
|
Name of this service. Defaults to the |
None
|
|
str | None
|
Version of this service. Defaults to the |
None
|
|
ConsoleOptions | Literal[False] | None
|
Whether to control terminal output. If |
None
|
|
bool | None
|
When to print a summary of the Logfire setup including a link to the dashboard. If |
None
|
|
Path | str | None
|
Directory that contains the |
None
|
|
Path | str | None
|
Directory to store credentials, and logs. If |
None
|
|
str | None
|
Root URL for the Logfire API. If |
None
|
|
IdGenerator | None
|
Generator for span IDs. Defaults to |
None
|
|
Callable[[], int] | None
|
Generator for nanosecond timestamps. Defaults to |
None
|
|
Sequence[SpanProcessor] | None
|
Span processors to use in addition to the default processor which exports spans to Logfire's API. |
None
|
|
Sequence[MetricReader] | None
|
Sequence of metric readers to be used in addition to the default reader which exports metrics to Logfire's API. |
None
|
|
PydanticPlugin | None
|
Configuration for the Pydantic plugin. If |
None
|
|
bool
|
Whether to shut down exporters and providers quickly, mostly used for tests. Defaults to |
False
|
|
ScrubbingOptions | Literal[False] | None
|
Options for scrubbing sensitive data. Set to |
None
|
|
bool | None
|
Whether to enable
f-string magic.
If |
None
|
|
SamplingOptions | None
|
Sampling options. See the sampling guide. |
None
|
Source code in logfire/_internal/config.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
load_spans_from_file ¶
load_spans_from_file(
file_path: str | Path | IO[bytes] | None,
) -> Iterator[ExportTraceServiceRequest]
Load a backup file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str | Path | IO[bytes] | None
|
The path to the backup file. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the file is not a valid backup file. |
Returns:
Type | Description |
---|---|
Iterator[ExportTraceServiceRequest]
|
An iterator over each |
Source code in logfire/_internal/exporters/file.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
suppress_instrumentation ¶
suppress_instrumentation()
Context manager to suppress all logs/spans generated by logfire or OpenTelemetry.
Source code in logfire/_internal/utils.py
239 240 241 242 243 244 245 246 247 248 249 |
|