Skip to content

Validation Errors

Pydantic attempts to provide useful validation errors. Below are details on common validation errors users may encounter when working with pydantic, together with some suggestions on how to fix them.

arguments_type

This error is raised when an object that would be passed as arguments to a function during validation is not a tuple, list, or dict. Because NamedTuple uses function calls in its implementation, that is one way to produce this error:

from typing import NamedTuple

from pydantic import BaseModel, ValidationError


class MyNamedTuple(NamedTuple):
    x: int


class MyModel(BaseModel):
    field: MyNamedTuple


try:
    MyModel.model_validate({'field': 'invalid'})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'arguments_type'

assertion_error

This error is raised when a failing assert statement is encountered during validation:

from pydantic import BaseModel, ValidationError, field_validator


class Model(BaseModel):
    x: int

    @field_validator('x')
    @classmethod
    def force_x_positive(cls, v):
        assert v > 0
        return v


try:
    Model(x=-1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'assertion_error'

bool_parsing

This error is raised when the input value is a string that is not valid for coercion to a boolean:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: bool


Model(x='true')  # OK

try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bool_parsing'

bool_type

This error is raised when the input value's type is not valid for a bool field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: bool


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bool_type'

bytes_invalid_encoding

This error is raised when a bytes value is invalid under the configured encoding. In the following example, b'a' is invalid hex (odd number of digits).

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: bytes
    model_config = {'val_json_bytes': 'hex'}


try:
    Model(x=b'a')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bytes_invalid_encoding'

This error is also raised for strict fields when the input value is not an instance of bool.

bytes_too_long

This error is raised when the length of a bytes value is greater than the field's max_length constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: bytes = Field(max_length=3)


try:
    Model(x=b'test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bytes_too_long'

bytes_too_short

This error is raised when the length of a bytes value is less than the field's min_length constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: bytes = Field(min_length=3)


try:
    Model(x=b't')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bytes_too_short'

bytes_type

This error is raised when the input value's type is not valid for a bytes field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: bytes


try:
    Model(x=123)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'bytes_type'

This error is also raised for strict fields when the input value is not an instance of bytes.

callable_type

This error is raised when the input value is not valid as a Callable:

from typing import Any, Callable

from pydantic import BaseModel, ImportString, ValidationError


class Model(BaseModel):
    x: ImportString[Callable[[Any], Any]]


Model(x='math:cos')  # OK

try:
    Model(x='os.path')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'callable_type'
from typing import Any
from collections.abc import Callable

from pydantic import BaseModel, ImportString, ValidationError


class Model(BaseModel):
    x: ImportString[Callable[[Any], Any]]


Model(x='math:cos')  # OK

try:
    Model(x='os.path')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'callable_type'

complex_str_parsing

This error is raised when the input value is a string but cannot be parsed as a complex number because it does not follow the rule in Python:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    num: complex


try:
    # Complex numbers in json are expected to be valid complex strings.
    # This value `abc` is not a valid complex string.
    Model.model_validate_json('{"num": "abc"}')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'complex_str_parsing'

complex_type

This error is raised when the input value cannot be interpreted as a complex number:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    num: complex


try:
    Model(num=False)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'complex_type'

dataclass_exact_type

This error is raised when validating a dataclass with strict=True and the input is not an instance of the dataclass:

import pydantic.dataclasses
from pydantic import TypeAdapter, ValidationError


@pydantic.dataclasses.dataclass
class MyDataclass:
    x: str


adapter = TypeAdapter(MyDataclass)

print(adapter.validate_python(MyDataclass(x='test'), strict=True))
#> MyDataclass(x='test')
print(adapter.validate_python({'x': 'test'}))
#> MyDataclass(x='test')

try:
    adapter.validate_python({'x': 'test'}, strict=True)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'dataclass_exact_type'

dataclass_type

This error is raised when the input value is not valid for a dataclass field:

from pydantic import ValidationError, dataclasses


@dataclasses.dataclass
class Inner:
    x: int


@dataclasses.dataclass
class Outer:
    y: Inner


Outer(y=Inner(x=1))  # OK

try:
    Outer(y=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'dataclass_type'

date_from_datetime_inexact

This error is raised when the input datetime value provided for a date field has a nonzero time component. For a timestamp to parse into a field of type date, the time components must all be zero:

from datetime import date, datetime

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: date


Model(x='2023-01-01')  # OK
Model(x=datetime(2023, 1, 1))  # OK

try:
    Model(x=datetime(2023, 1, 1, 12))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_from_datetime_inexact'

date_from_datetime_parsing

This error is raised when the input value is a string that cannot be parsed for a date field:

from datetime import date

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: date


try:
    Model(x='XX1494012000')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_from_datetime_parsing'

date_future

This error is raised when the input value provided for a FutureDate field is not in the future:

from datetime import date

from pydantic import BaseModel, FutureDate, ValidationError


class Model(BaseModel):
    x: FutureDate


try:
    Model(x=date(2000, 1, 1))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_future'

date_parsing

This error is raised when validating JSON where the input value is string that cannot be parsed for a date field:

import json
from datetime import date

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: date = Field(strict=True)


try:
    Model.model_validate_json(json.dumps({'x': '1'}))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_parsing'

date_past

This error is raised when the value provided for a PastDate field is not in the past:

from datetime import date, timedelta

from pydantic import BaseModel, PastDate, ValidationError


class Model(BaseModel):
    x: PastDate


try:
    Model(x=date.today() + timedelta(1))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_past'

date_type

This error is raised when the input value's type is not valid for a date field:

from datetime import date

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: date


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'date_type'

This error is also raised for strict fields when the input value is not an instance of date.

datetime_from_date_parsing

Note

Support for this error, along with support for parsing datetimes from yyyy-MM-DD dates will be added in v2.6.0

This error is raised when the input value is a string that cannot be parsed for a datetime field:

from datetime import datetime

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: datetime


try:
    # there is no 13th month
    Model(x='2023-13-01')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_from_date_parsing'

datetime_future

This error is raised when the value provided for a FutureDatetime field is not in the future:

from datetime import datetime

from pydantic import BaseModel, FutureDatetime, ValidationError


class Model(BaseModel):
    x: FutureDatetime


try:
    Model(x=datetime(2000, 1, 1))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_future'

datetime_object_invalid

This error is raised when something about the datetime object is not valid:

from datetime import datetime, tzinfo

from pydantic import AwareDatetime, BaseModel, ValidationError


class CustomTz(tzinfo):
    # utcoffset is not implemented!

    def tzname(self, _dt):
        return 'CustomTZ'


class Model(BaseModel):
    x: AwareDatetime


try:
    Model(x=datetime(2023, 1, 1, tzinfo=CustomTz()))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_object_invalid'

datetime_parsing

This error is raised when the value is a string that cannot be parsed for a datetime field:

import json
from datetime import datetime

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: datetime = Field(strict=True)


try:
    Model.model_validate_json(json.dumps({'x': 'not a datetime'}))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_parsing'

datetime_past

This error is raised when the value provided for a PastDatetime field is not in the past:

from datetime import datetime, timedelta

from pydantic import BaseModel, PastDatetime, ValidationError


class Model(BaseModel):
    x: PastDatetime


try:
    Model(x=datetime.now() + timedelta(100))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_past'

datetime_type

This error is raised when the input value's type is not valid for a datetime field:

from datetime import datetime

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: datetime


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'datetime_type'

This error is also raised for strict fields when the input value is not an instance of datetime.

decimal_max_digits

This error is raised when the value provided for a Decimal has too many digits:

from decimal import Decimal

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: Decimal = Field(max_digits=3)


try:
    Model(x='42.1234')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'decimal_max_digits'

decimal_max_places

This error is raised when the value provided for a Decimal has too many digits after the decimal point:

from decimal import Decimal

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: Decimal = Field(decimal_places=3)


try:
    Model(x='42.1234')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'decimal_max_places'

decimal_parsing

This error is raised when the value provided for a Decimal could not be parsed as a decimal number:

from decimal import Decimal

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: Decimal = Field(decimal_places=3)


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'decimal_parsing'

decimal_type

This error is raised when the value provided for a Decimal is of the wrong type:

from decimal import Decimal

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: Decimal = Field(decimal_places=3)


try:
    Model(x=[1, 2, 3])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'decimal_type'

This error is also raised for strict fields when the input value is not an instance of Decimal.

decimal_whole_digits

This error is raised when the value provided for a Decimal has more digits before the decimal point than max_digits - decimal_places (as long as both are specified):

from decimal import Decimal

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: Decimal = Field(max_digits=6, decimal_places=3)


try:
    Model(x='12345.6')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'decimal_whole_digits'

This error is also raised for strict fields when the input value is not an instance of Decimal.

dict_type

This error is raised when the input value's type is not dict for a dict field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: dict


try:
    Model(x=['1', '2'])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'dict_type'

enum

This error is raised when the input value does not exist in an enum field members:

from enum import Enum

from pydantic import BaseModel, ValidationError


class MyEnum(str, Enum):
    option = 'option'


class Model(BaseModel):
    x: MyEnum


try:
    Model(x='other_option')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'enum'

extra_forbidden

This error is raised when the input value contains extra fields, but model_config['extra'] == 'forbid':

from pydantic import BaseModel, ConfigDict, ValidationError


class Model(BaseModel):
    x: str

    model_config = ConfigDict(extra='forbid')


try:
    Model(x='test', y='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'extra_forbidden'

You can read more about the extra configuration in the Extra Attributes section.

finite_number

This error is raised when the value is infinite, or too large to be represented as a 64-bit floating point number during validation:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: int


try:
    Model(x=2.2250738585072011e308)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'finite_number'

float_parsing

This error is raised when the value is a string that can't be parsed as a float:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: float


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'float_parsing'

float_type

This error is raised when the input value's type is not valid for a float field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: float


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'float_type'

frozen_field

This error is raised when you attempt to assign a value to a field with frozen=True, or to delete such a field:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: str = Field('test', frozen=True)


model = Model()

try:
    model.x = 'test1'
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'frozen_field'

try:
    del model.x
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'frozen_field'

frozen_instance

This error is raised when model_config['frozen] == True and you attempt to delete or assign a new value to any of the fields:

from pydantic import BaseModel, ConfigDict, ValidationError


class Model(BaseModel):
    x: int

    model_config = ConfigDict(frozen=True)


m = Model(x=1)

try:
    m.x = 2
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'frozen_instance'

try:
    del m.x
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'frozen_instance'

frozen_set_type

This error is raised when the input value's type is not valid for a frozenset field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: frozenset


try:
    model = Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'frozen_set_type'

get_attribute_error

This error is raised when model_config['from_attributes'] == True and an error is raised while reading the attributes:

from pydantic import BaseModel, ConfigDict, ValidationError


class Foobar:
    def __init__(self):
        self.x = 1

    @property
    def y(self):
        raise RuntimeError('intentional error')


class Model(BaseModel):
    x: int
    y: str

    model_config = ConfigDict(from_attributes=True)


try:
    Model.model_validate(Foobar())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'get_attribute_error'

greater_than

This error is raised when the value is not greater than the field's gt constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: int = Field(gt=10)


try:
    Model(x=10)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'greater_than'

greater_than_equal

This error is raised when the value is not greater than or equal to the field's ge constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: int = Field(ge=10)


try:
    Model(x=9)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'greater_than_equal'

int_from_float

This error is raised when you provide a float value for an int field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: int


try:
    Model(x=0.5)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'int_from_float'

int_parsing

This error is raised when the value can't be parsed as int:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: int


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'int_parsing'

int_parsing_size

This error is raised when attempting to parse a python or JSON value from a string outside the maximum range that Python str to int parsing permits:

import json

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: int


# from Python
assert Model(x='1' * 4_300).x == int('1' * 4_300)  # OK

too_long = '1' * 4_301
try:
    Model(x=too_long)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'int_parsing_size'

# from JSON
try:
    Model.model_validate_json(json.dumps({'x': too_long}))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'int_parsing_size'

int_type

This error is raised when the input value's type is not valid for an int field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: int


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'int_type'

invalid_key

This error is raised when attempting to validate a dict that has a key that is not an instance of str:

from pydantic import BaseModel, ConfigDict, ValidationError


class Model(BaseModel):
    x: int

    model_config = ConfigDict(extra='allow')


try:
    Model.model_validate({'x': 1, b'y': 2})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'invalid_key'

is_instance_of

This error is raised when the input value is not an instance of the expected type:

from pydantic import BaseModel, ConfigDict, ValidationError


class Nested:
    x: str


class Model(BaseModel):
    y: Nested

    model_config = ConfigDict(arbitrary_types_allowed=True)


try:
    Model(y='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'is_instance_of'

is_subclass_of

This error is raised when the input value is not a subclass of the expected type:

from typing import Type

from pydantic import BaseModel, ValidationError


class Nested:
    x: str


class Model(BaseModel):
    y: Type[Nested]


try:
    Model(y='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'is_subclass_of'
from pydantic import BaseModel, ValidationError


class Nested:
    x: str


class Model(BaseModel):
    y: type[Nested]


try:
    Model(y='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'is_subclass_of'

iterable_type

This error is raised when the input value is not valid as an Iterable:

from typing import Iterable

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    y: Iterable


try:
    Model(y=123)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'iterable_type'
from collections.abc import Iterable

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    y: Iterable


try:
    Model(y=123)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'iterable_type'

iteration_error

This error is raised when an error occurs during iteration:

from typing import List

from pydantic import BaseModel, ValidationError


def gen():
    yield 1
    raise RuntimeError('error')


class Model(BaseModel):
    x: List[int]


try:
    Model(x=gen())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'iteration_error'
from pydantic import BaseModel, ValidationError


def gen():
    yield 1
    raise RuntimeError('error')


class Model(BaseModel):
    x: list[int]


try:
    Model(x=gen())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'iteration_error'

json_invalid

This error is raised when the input value is not a valid JSON string:

from pydantic import BaseModel, Json, ValidationError


class Model(BaseModel):
    x: Json


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'json_invalid'

json_type

This error is raised when the input value is of a type that cannot be parsed as JSON:

from pydantic import BaseModel, Json, ValidationError


class Model(BaseModel):
    x: Json


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'json_type'

less_than

This error is raised when the input value is not less than the field's lt constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: int = Field(lt=10)


try:
    Model(x=10)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'less_than'

less_than_equal

This error is raised when the input value is not less than or equal to the field's le constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: int = Field(le=10)


try:
    Model(x=11)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'less_than_equal'

list_type

This error is raised when the input value's type is not valid for a list field:

from typing import List

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: List[int]


try:
    Model(x=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'list_type'
from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: list[int]


try:
    Model(x=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'list_type'

literal_error

This error is raised when the input value is not one of the expected literal values:

from typing import Literal

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: Literal['a', 'b']


Model(x='a')  # OK

try:
    Model(x='c')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'literal_error'

mapping_type

This error is raised when a problem occurs during validation due to a failure in a call to the methods from the Mapping protocol, such as .items():

from collections.abc import Mapping
from typing import Dict

from pydantic import BaseModel, ValidationError


class BadMapping(Mapping):
    def items(self):
        raise ValueError()

    def __iter__(self):
        raise ValueError()

    def __getitem__(self, key):
        raise ValueError()

    def __len__(self):
        return 1


class Model(BaseModel):
    x: Dict[str, str]


try:
    Model(x=BadMapping())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'mapping_type'
from collections.abc import Mapping

from pydantic import BaseModel, ValidationError


class BadMapping(Mapping):
    def items(self):
        raise ValueError()

    def __iter__(self):
        raise ValueError()

    def __getitem__(self, key):
        raise ValueError()

    def __len__(self):
        return 1


class Model(BaseModel):
    x: dict[str, str]


try:
    Model(x=BadMapping())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'mapping_type'

missing

This error is raised when there are required fields missing from the input value:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: str


try:
    Model()
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'missing'

missing_argument

This error is raised when a required positional-or-keyword argument is not passed to a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(a: int):
    return a


try:
    foo()
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'missing_argument'

missing_keyword_only_argument

This error is raised when a required keyword-only argument is not passed to a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(*, a: int):
    return a


try:
    foo()
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'missing_keyword_only_argument'

missing_positional_only_argument

This error is raised when a required positional-only argument is not passed to a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(a: int, /):
    return a


try:
    foo()
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'missing_positional_only_argument'

model_attributes_type

This error is raised when the input value is not a valid dictionary, model instance, or instance that fields can be extracted from:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    a: int
    b: int


# simply validating a dict
print(Model.model_validate({'a': 1, 'b': 2}))
#> a=1 b=2


class CustomObj:
    def __init__(self, a, b):
        self.a = a
        self.b = b


# using from attributes to extract fields from an objects
print(Model.model_validate(CustomObj(3, 4), from_attributes=True))
#> a=3 b=4

try:
    Model.model_validate('not an object', from_attributes=True)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'model_attributes_type'

model_type

This error is raised when the input to a model is not an instance of the model or dict:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    a: int
    b: int


# simply validating a dict
m = Model.model_validate({'a': 1, 'b': 2})
print(m)
#> a=1 b=2

# validating an existing model instance
print(Model.model_validate(m))
#> a=1 b=2

try:
    Model.model_validate('not an object')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'model_type'

multiple_argument_values

This error is raised when you provide multiple values for a single argument while calling a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(a: int):
    return a


try:
    foo(1, a=2)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'multiple_argument_values'

multiple_of

This error is raised when the input is not a multiple of a field's multiple_of constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: int = Field(multiple_of=5)


try:
    Model(x=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'multiple_of'

needs_python_object

This type of error is raised when validation is attempted from a format that cannot be converted to a Python object. For example, we cannot check isinstance or issubclass from JSON:

import json
from typing import Type

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    bm: Type[BaseModel]


try:
    Model.model_validate_json(json.dumps({'bm': 'not a basemodel class'}))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'needs_python_object'
import json

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    bm: type[BaseModel]


try:
    Model.model_validate_json(json.dumps({'bm': 'not a basemodel class'}))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'needs_python_object'

no_such_attribute

This error is raised when validate_assignment=True in the config, and you attempt to assign a value to an attribute that is not an existing field:

from pydantic import ConfigDict, ValidationError, dataclasses


@dataclasses.dataclass(config=ConfigDict(validate_assignment=True))
class MyDataclass:
    x: int


m = MyDataclass(x=1)
try:
    m.y = 10
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'no_such_attribute'

none_required

This error is raised when the input value is not None for a field that requires None:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: None


try:
    Model(x=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'none_required'

Note

You may encounter this error when there is a naming collision in your model between a field name and its type. More specifically, this error is likely to be thrown when the default value of that field is None.

For example, the following would yield the none_required validation error since the field int is set to a default value of None and has the exact same name as its type, which causes problems with validation.

from typing import Optional

from pydantic import BaseModel


class M1(BaseModel):
    int: Optional[int] = None


m = M1(int=123)  # errors

recursion_loop

This error is raised when a cyclic reference is detected:

from typing import List

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: List['Model']


d = {'x': []}
d['x'].append(d)
try:
    Model(**d)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'recursion_loop'

set_type

This error is raised when the value type is not valid for a set field:

from typing import Set

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: Set[int]


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'set_type'
from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: set[int]


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'set_type'

string_pattern_mismatch

This error is raised when the input value doesn't match the field's pattern constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: str = Field(pattern='test')


try:
    Model(x='1')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_pattern_mismatch'

string_sub_type

This error is raised when the value is an instance of a strict subtype of str when the field is strict:

from enum import Enum

from pydantic import BaseModel, Field, ValidationError


class MyEnum(str, Enum):
    foo = 'foo'


class Model(BaseModel):
    x: str = Field(strict=True)


try:
    Model(x=MyEnum.foo)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_sub_type'

string_too_long

This error is raised when the input value is a string whose length is greater than the field's max_length constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: str = Field(max_length=3)


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_too_long'

string_too_short

This error is raised when the input value is a string whose length is less than the field's min_length constraint:

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: str = Field(min_length=3)


try:
    Model(x='t')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_too_short'

string_type

This error is raised when the input value's type is not valid for a str field:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: str


try:
    Model(x=1)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_type'

This error is also raised for strict fields when the input value is not an instance of str.

string_unicode

This error is raised when the value cannot be parsed as a Unicode string:

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: str


try:
    Model(x=b'\x81')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'string_unicode'

time_delta_parsing

This error is raised when the input value is a string that cannot be parsed for a timedelta field:

from datetime import timedelta

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: timedelta


try:
    Model(x='t')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'time_delta_parsing'

time_delta_type

This error is raised when the input value's type is not valid for a timedelta field:

from datetime import timedelta

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: timedelta


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'time_delta_type'

This error is also raised for strict fields when the input value is not an instance of timedelta.

time_parsing

This error is raised when the input value is a string that cannot be parsed for a time field:

from datetime import time

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: time


try:
    Model(x='25:20:30.400')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'time_parsing'

time_type

This error is raised when the value type is not valid for a time field:

from datetime import time

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: time


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'time_type'

This error is also raised for strict fields when the input value is not an instance of time.

timezone_aware

This error is raised when the datetime value provided for a timezone-aware datetime field doesn't have timezone information:

from datetime import datetime

from pydantic import AwareDatetime, BaseModel, ValidationError


class Model(BaseModel):
    x: AwareDatetime


try:
    Model(x=datetime.now())
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'timezone_aware'

timezone_naive

This error is raised when the datetime value provided for a timezone-naive datetime field has timezone info:

from datetime import datetime, timezone

from pydantic import BaseModel, NaiveDatetime, ValidationError


class Model(BaseModel):
    x: NaiveDatetime


try:
    Model(x=datetime.now(tz=timezone.utc))
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'timezone_naive'

too_long

This error is raised when the input value's length is greater than the field's max_length constraint:

from typing import List

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: List[int] = Field(max_length=3)


try:
    Model(x=[1, 2, 3, 4])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'too_long'
from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: list[int] = Field(max_length=3)


try:
    Model(x=[1, 2, 3, 4])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'too_long'

too_short

This error is raised when the value length is less than the field's min_length constraint:

from typing import List

from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: List[int] = Field(min_length=3)


try:
    Model(x=[1, 2])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'too_short'
from pydantic import BaseModel, Field, ValidationError


class Model(BaseModel):
    x: list[int] = Field(min_length=3)


try:
    Model(x=[1, 2])
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'too_short'

tuple_type

This error is raised when the input value's type is not valid for a tuple field:

from typing import Tuple

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: Tuple[int]


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'tuple_type'
from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    x: tuple[int]


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'tuple_type'

This error is also raised for strict fields when the input value is not an instance of tuple.

unexpected_keyword_argument

This error is raised when you provide a value by keyword for a positional-only argument while calling a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(a: int, /):
    return a


try:
    foo(a=2)
except ValidationError as exc:
    print(repr(exc.errors()[1]['type']))
    #> 'unexpected_keyword_argument'

It is also raised when using pydantic.dataclasses and extra=forbid:

from pydantic import TypeAdapter, ValidationError
from pydantic.dataclasses import dataclass


@dataclass(config={'extra': 'forbid'})
class Foo:
    bar: int


try:
    TypeAdapter(Foo).validate_python({'bar': 1, 'foobar': 2})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'unexpected_keyword_argument'

unexpected_positional_argument

This error is raised when you provide a positional value for a keyword-only argument while calling a function decorated with validate_call:

from pydantic import ValidationError, validate_call


@validate_call
def foo(*, a: int):
    return a


try:
    foo(2)
except ValidationError as exc:
    print(repr(exc.errors()[1]['type']))
    #> 'unexpected_positional_argument'

union_tag_invalid

This error is raised when the input's discriminator is not one of the expected values:

from typing import Literal, Union

from pydantic import BaseModel, Field, ValidationError


class BlackCat(BaseModel):
    pet_type: Literal['blackcat']


class WhiteCat(BaseModel):
    pet_type: Literal['whitecat']


class Model(BaseModel):
    cat: Union[BlackCat, WhiteCat] = Field(discriminator='pet_type')


try:
    Model(cat={'pet_type': 'dog'})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'union_tag_invalid'
from typing import Literal

from pydantic import BaseModel, Field, ValidationError


class BlackCat(BaseModel):
    pet_type: Literal['blackcat']


class WhiteCat(BaseModel):
    pet_type: Literal['whitecat']


class Model(BaseModel):
    cat: BlackCat | WhiteCat = Field(discriminator='pet_type')


try:
    Model(cat={'pet_type': 'dog'})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'union_tag_invalid'

union_tag_not_found

This error is raised when it is not possible to extract a discriminator value from the input:

from typing import Literal, Union

from pydantic import BaseModel, Field, ValidationError


class BlackCat(BaseModel):
    pet_type: Literal['blackcat']


class WhiteCat(BaseModel):
    pet_type: Literal['whitecat']


class Model(BaseModel):
    cat: Union[BlackCat, WhiteCat] = Field(discriminator='pet_type')


try:
    Model(cat={'name': 'blackcat'})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'union_tag_not_found'
from typing import Literal

from pydantic import BaseModel, Field, ValidationError


class BlackCat(BaseModel):
    pet_type: Literal['blackcat']


class WhiteCat(BaseModel):
    pet_type: Literal['whitecat']


class Model(BaseModel):
    cat: BlackCat | WhiteCat = Field(discriminator='pet_type')


try:
    Model(cat={'name': 'blackcat'})
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'union_tag_not_found'

url_parsing

This error is raised when the input value cannot be parsed as a URL:

from pydantic import AnyUrl, BaseModel, ValidationError


class Model(BaseModel):
    x: AnyUrl


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'url_parsing'

url_scheme

This error is raised when the URL scheme is not valid for the URL type of the field:

from pydantic import BaseModel, HttpUrl, ValidationError


class Model(BaseModel):
    x: HttpUrl


try:
    Model(x='ftp://example.com')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'url_scheme'

url_syntax_violation

This error is raised when the URL syntax is not valid:

from pydantic import BaseModel, Field, HttpUrl, ValidationError


class Model(BaseModel):
    x: HttpUrl = Field(strict=True)


try:
    Model(x='http:////example.com')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'url_syntax_violation'

url_too_long

This error is raised when the URL length is greater than 2083:

from pydantic import BaseModel, HttpUrl, ValidationError


class Model(BaseModel):
    x: HttpUrl


try:
    Model(x='x' * 2084)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'url_too_long'

url_type

This error is raised when the input value's type is not valid for a URL field:

from pydantic import BaseModel, HttpUrl, ValidationError


class Model(BaseModel):
    x: HttpUrl


try:
    Model(x=None)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'url_type'

uuid_parsing

This error is raised when the input value's type is not valid for a UUID field:

from uuid import UUID

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    u: UUID


try:
    Model(u='12345678-124-1234-1234-567812345678')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'uuid_parsing'

uuid_type

This error is raised when the input value's type is not valid instance for a UUID field (str, bytes or UUID):

from uuid import UUID

from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    u: UUID


try:
    Model(u=1234567812412341234567812345678)
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'uuid_type'

uuid_version

This error is raised when the input value's type is not match UUID version:

from pydantic import UUID5, BaseModel, ValidationError


class Model(BaseModel):
    u: UUID5


try:
    Model(u='a6cc5730-2261-11ee-9c43-2eb5a363657c')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'uuid_version'

value_error

This error is raised when a ValueError is raised during validation:

from pydantic import BaseModel, ValidationError, field_validator


class Model(BaseModel):
    x: str

    @field_validator('x')
    @classmethod
    def repeat_b(cls, v):
        raise ValueError()


try:
    Model(x='test')
except ValidationError as exc:
    print(repr(exc.errors()[0]['type']))
    #> 'value_error'