Types
Where possible Pydantic uses standard library types to define fields, thus smoothing the learning curve. For many useful applications, however, no standard library type exists, so Pydantic implements many commonly used types.
There are also more complex types that can be found in the Pydantic Extra Types package.
If no existing type suits your purpose you can also implement your own Pydantic-compatible types with custom properties and validation.
The following sections describe the types supported by Pydantic.
- Standard Library Types — types from the Python standard library.
- Strict Types — types that enable you to prevent coercion from compatible types.
- Custom Data Types — create your own custom data types.
- Field Type Conversions — strict and lax conversion between different field types.
Type conversion¶
During validation, Pydantic can coerce data into expected types.
There are two modes of coercion: strict and lax. See Conversion Table for more details on how Pydantic converts data in both strict and lax modes.
See Strict mode and Strict Types for details on enabling strict coercion.
Strict Types¶
Pydantic provides the following strict types:
These types will only pass validation when the validated value is of the respective type or is a subtype of that type.
Constrained types¶
This behavior is also exposed via the strict
field of the constrained types and can be combined with a multitude of complex validation rules. See the individual type signatures for supported arguments.
The following caveats apply:
StrictBytes
(and thestrict
option ofconbytes()
) will accept bothbytes
, andbytearray
types.StrictInt
(and thestrict
option ofconint()
) will not acceptbool
types, even thoughbool
is a subclass ofint
in Python. Other subclasses will work.StrictFloat
(and thestrict
option ofconfloat()
) will not acceptint
.
Besides the above, you can also have a FiniteFloat
type that will only accept finite values (i.e. not inf
, -inf
or nan
).
Custom Types¶
You can also define your own custom data types. There are several ways to achieve it.
Composing types via Annotated
¶
PEP 593 introduced Annotated
as a way to attach runtime metadata to types without changing how type checkers interpret them.
Pydantic takes advantage of this to allow you to create types that are identical to the original type as far as type checkers are concerned, but add validation, serialize differently, etc.
For example, to create a type representing a positive int:
# or `from typing import Annotated` for Python 3.9+
from typing_extensions import Annotated
from pydantic import Field, TypeAdapter, ValidationError
PositiveInt = Annotated[int, Field(gt=0)]
ta = TypeAdapter(PositiveInt)
print(ta.validate_python(1))
#> 1
try:
ta.validate_python(-1)
except ValidationError as exc:
print(exc)
"""
1 validation error for constrained-int
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
# or `from typing import Annotated` for Python 3.9+
from typing import Annotated
from pydantic import Field, TypeAdapter, ValidationError
PositiveInt = Annotated[int, Field(gt=0)]
ta = TypeAdapter(PositiveInt)
print(ta.validate_python(1))
#> 1
try:
ta.validate_python(-1)
except ValidationError as exc:
print(exc)
"""
1 validation error for constrained-int
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
Note that you can also use constraints from annotated-types to make this Pydantic-agnostic:
from annotated_types import Gt
from typing_extensions import Annotated
from pydantic import TypeAdapter, ValidationError
PositiveInt = Annotated[int, Gt(0)]
ta = TypeAdapter(PositiveInt)
print(ta.validate_python(1))
#> 1
try:
ta.validate_python(-1)
except ValidationError as exc:
print(exc)
"""
1 validation error for constrained-int
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
from annotated_types import Gt
from typing import Annotated
from pydantic import TypeAdapter, ValidationError
PositiveInt = Annotated[int, Gt(0)]
ta = TypeAdapter(PositiveInt)
print(ta.validate_python(1))
#> 1
try:
ta.validate_python(-1)
except ValidationError as exc:
print(exc)
"""
1 validation error for constrained-int
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
Adding validation and serialization¶
You can add or override validation, serialization, and JSON schemas to an arbitrary type using the markers that Pydantic exports:
from typing_extensions import Annotated
from pydantic import (
AfterValidator,
PlainSerializer,
TypeAdapter,
WithJsonSchema,
)
TruncatedFloat = Annotated[
float,
AfterValidator(lambda x: round(x, 1)),
PlainSerializer(lambda x: f'{x:.1e}', return_type=str),
WithJsonSchema({'type': 'string'}, mode='serialization'),
]
ta = TypeAdapter(TruncatedFloat)
input = 1.02345
assert input != 1.0
assert ta.validate_python(input) == 1.0
assert ta.dump_json(input) == b'"1.0e+00"'
assert ta.json_schema(mode='validation') == {'type': 'number'}
assert ta.json_schema(mode='serialization') == {'type': 'string'}
from typing import Annotated
from pydantic import (
AfterValidator,
PlainSerializer,
TypeAdapter,
WithJsonSchema,
)
TruncatedFloat = Annotated[
float,
AfterValidator(lambda x: round(x, 1)),
PlainSerializer(lambda x: f'{x:.1e}', return_type=str),
WithJsonSchema({'type': 'string'}, mode='serialization'),
]
ta = TypeAdapter(TruncatedFloat)
input = 1.02345
assert input != 1.0
assert ta.validate_python(input) == 1.0
assert ta.dump_json(input) == b'"1.0e+00"'
assert ta.json_schema(mode='validation') == {'type': 'number'}
assert ta.json_schema(mode='serialization') == {'type': 'string'}
Generics¶
You can use type variables within Annotated
to make reusable modifications to types:
from typing import Any, List, Sequence, TypeVar
from annotated_types import Gt, Len
from typing_extensions import Annotated
from pydantic import ValidationError
from pydantic.type_adapter import TypeAdapter
SequenceType = TypeVar('SequenceType', bound=Sequence[Any])
ShortSequence = Annotated[SequenceType, Len(max_length=10)]
ta = TypeAdapter(ShortSequence[List[int]])
v = ta.validate_python([1, 2, 3, 4, 5])
assert v == [1, 2, 3, 4, 5]
try:
ta.validate_python([1] * 100)
except ValidationError as exc:
print(exc)
"""
1 validation error for list[int]
List should have at most 10 items after validation, not 100 [type=too_long, input_value=[1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1], input_type=list]
"""
T = TypeVar('T') # or a bound=SupportGt
PositiveList = List[Annotated[T, Gt(0)]]
ta = TypeAdapter(PositiveList[float])
v = ta.validate_python([1])
assert type(v[0]) is float
try:
ta.validate_python([-1])
except ValidationError as exc:
print(exc)
"""
1 validation error for list[constrained-float]
0
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
from typing import Any, TypeVar
from collections.abc import Sequence
from annotated_types import Gt, Len
from typing import Annotated
from pydantic import ValidationError
from pydantic.type_adapter import TypeAdapter
SequenceType = TypeVar('SequenceType', bound=Sequence[Any])
ShortSequence = Annotated[SequenceType, Len(max_length=10)]
ta = TypeAdapter(ShortSequence[list[int]])
v = ta.validate_python([1, 2, 3, 4, 5])
assert v == [1, 2, 3, 4, 5]
try:
ta.validate_python([1] * 100)
except ValidationError as exc:
print(exc)
"""
1 validation error for list[int]
List should have at most 10 items after validation, not 100 [type=too_long, input_value=[1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1], input_type=list]
"""
T = TypeVar('T') # or a bound=SupportGt
PositiveList = list[Annotated[T, Gt(0)]]
ta = TypeAdapter(PositiveList[float])
v = ta.validate_python([1])
assert type(v[0]) is float
try:
ta.validate_python([-1])
except ValidationError as exc:
print(exc)
"""
1 validation error for list[constrained-float]
0
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
Named type aliases¶
The above examples make use of implicit type aliases.
This means that they will not be able to have a title
in JSON schemas and their schema will be copied between fields.
You can use PEP 695's TypeAliasType
via its typing-extensions backport to make named aliases, allowing you to define a new type without creating subclasses.
This new type can be as simple as a name or have complex validation logic attached to it:
from typing import List
from annotated_types import Gt
from typing_extensions import Annotated, TypeAliasType
from pydantic import BaseModel
ImplicitAliasPositiveIntList = List[Annotated[int, Gt(0)]]
class Model1(BaseModel):
x: ImplicitAliasPositiveIntList
y: ImplicitAliasPositiveIntList
print(Model1.model_json_schema())
"""
{
'properties': {
'x': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'title': 'X',
'type': 'array',
},
'y': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'title': 'Y',
'type': 'array',
},
},
'required': ['x', 'y'],
'title': 'Model1',
'type': 'object',
}
"""
PositiveIntList = TypeAliasType('PositiveIntList', List[Annotated[int, Gt(0)]])
class Model2(BaseModel):
x: PositiveIntList
y: PositiveIntList
print(Model2.model_json_schema())
"""
{
'$defs': {
'PositiveIntList': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'type': 'array',
}
},
'properties': {
'x': {'$ref': '#/$defs/PositiveIntList'},
'y': {'$ref': '#/$defs/PositiveIntList'},
},
'required': ['x', 'y'],
'title': 'Model2',
'type': 'object',
}
"""
from annotated_types import Gt
from typing_extensions import TypeAliasType
from typing import Annotated
from pydantic import BaseModel
ImplicitAliasPositiveIntList = list[Annotated[int, Gt(0)]]
class Model1(BaseModel):
x: ImplicitAliasPositiveIntList
y: ImplicitAliasPositiveIntList
print(Model1.model_json_schema())
"""
{
'properties': {
'x': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'title': 'X',
'type': 'array',
},
'y': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'title': 'Y',
'type': 'array',
},
},
'required': ['x', 'y'],
'title': 'Model1',
'type': 'object',
}
"""
PositiveIntList = TypeAliasType('PositiveIntList', list[Annotated[int, Gt(0)]])
class Model2(BaseModel):
x: PositiveIntList
y: PositiveIntList
print(Model2.model_json_schema())
"""
{
'$defs': {
'PositiveIntList': {
'items': {'exclusiveMinimum': 0, 'type': 'integer'},
'type': 'array',
}
},
'properties': {
'x': {'$ref': '#/$defs/PositiveIntList'},
'y': {'$ref': '#/$defs/PositiveIntList'},
},
'required': ['x', 'y'],
'title': 'Model2',
'type': 'object',
}
"""
These named type aliases can also be generic:
from typing import Generic, List, TypeVar
from annotated_types import Gt
from typing_extensions import Annotated, TypeAliasType
from pydantic import BaseModel, ValidationError
T = TypeVar('T') # or a `bound=SupportGt`
PositiveList = TypeAliasType(
'PositiveList', List[Annotated[T, Gt(0)]], type_params=(T,)
)
class Model(BaseModel, Generic[T]):
x: PositiveList[T]
assert Model[int].model_validate_json('{"x": ["1"]}').x == [1]
try:
Model[int](x=[-1])
except ValidationError as exc:
print(exc)
"""
1 validation error for Model[int]
x.0
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
from typing import Generic, TypeVar
from annotated_types import Gt
from typing_extensions import TypeAliasType
from typing import Annotated
from pydantic import BaseModel, ValidationError
T = TypeVar('T') # or a `bound=SupportGt`
PositiveList = TypeAliasType(
'PositiveList', list[Annotated[T, Gt(0)]], type_params=(T,)
)
class Model(BaseModel, Generic[T]):
x: PositiveList[T]
assert Model[int].model_validate_json('{"x": ["1"]}').x == [1]
try:
Model[int](x=[-1])
except ValidationError as exc:
print(exc)
"""
1 validation error for Model[int]
x.0
Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
"""
Named recursive types¶
You can also use TypeAliasType
to create recursive types:
from typing import Any, Dict, List, Union
from pydantic_core import PydanticCustomError
from typing_extensions import Annotated, TypeAliasType
from pydantic import (
TypeAdapter,
ValidationError,
ValidationInfo,
ValidatorFunctionWrapHandler,
WrapValidator,
)
def json_custom_error_validator(
value: Any, handler: ValidatorFunctionWrapHandler, _info: ValidationInfo
) -> Any:
"""Simplify the error message to avoid a gross error stemming
from exhaustive checking of all union options.
"""
try:
return handler(value)
except ValidationError:
raise PydanticCustomError(
'invalid_json',
'Input is not valid json',
)
Json = TypeAliasType(
'Json',
Annotated[
Union[Dict[str, 'Json'], List['Json'], str, int, float, bool, None],
WrapValidator(json_custom_error_validator),
],
)
ta = TypeAdapter(Json)
v = ta.validate_python({'x': [1], 'y': {'z': True}})
assert v == {'x': [1], 'y': {'z': True}}
try:
ta.validate_python({'x': object()})
except ValidationError as exc:
print(exc)
"""
1 validation error for function-wrap[json_custom_error_validator()]
Input is not valid json [type=invalid_json, input_value={'x': <object object at 0x0123456789ab>}, input_type=dict]
"""
from typing import Any, Union
from pydantic_core import PydanticCustomError
from typing_extensions import TypeAliasType
from typing import Annotated
from pydantic import (
TypeAdapter,
ValidationError,
ValidationInfo,
ValidatorFunctionWrapHandler,
WrapValidator,
)
def json_custom_error_validator(
value: Any, handler: ValidatorFunctionWrapHandler, _info: ValidationInfo
) -> Any:
"""Simplify the error message to avoid a gross error stemming
from exhaustive checking of all union options.
"""
try:
return handler(value)
except ValidationError:
raise PydanticCustomError(
'invalid_json',
'Input is not valid json',
)
Json = TypeAliasType(
'Json',
Annotated[
Union[dict[str, 'Json'], list['Json'], str, int, float, bool, None],
WrapValidator(json_custom_error_validator),
],
)
ta = TypeAdapter(Json)
v = ta.validate_python({'x': [1], 'y': {'z': True}})
assert v == {'x': [1], 'y': {'z': True}}
try:
ta.validate_python({'x': object()})
except ValidationError as exc:
print(exc)
"""
1 validation error for function-wrap[json_custom_error_validator()]
Input is not valid json [type=invalid_json, input_value={'x': <object object at 0x0123456789ab>}, input_type=dict]
"""
Customizing validation with __get_pydantic_core_schema__
¶
To do more extensive customization of how Pydantic handles custom classes, and in particular when you have access to the
class or can subclass it, you can implement a special __get_pydantic_core_schema__
to tell Pydantic how to generate the
pydantic-core
schema.
While pydantic
uses pydantic-core
internally to handle validation and serialization, it is a new API for Pydantic V2,
thus it is one of the areas most likely to be tweaked in the future and you should try to stick to the built-in
constructs like those provided by annotated-types
, pydantic.Field
, or BeforeValidator
and so on.
You can implement __get_pydantic_core_schema__
both on a custom type and on metadata intended to be put in Annotated
.
In both cases the API is middleware-like and similar to that of "wrap" validators: you get a source_type
(which isn't
necessarily the same as the class, in particular for generics) and a handler
that you can call with a type to either
call the next metadata in Annotated
or call into Pydantic's internal schema generation.
The simplest no-op implementation calls the handler with the type you are given, then returns that as the result. You can also choose to modify the type before calling the handler, modify the core schema returned by the handler, or not call the handler at all.
As a method on a custom type¶
The following is an example of a type that uses __get_pydantic_core_schema__
to customize how it gets validated.
This is equivalent to implementing __get_validators__
in Pydantic V1.
from typing import Any
from pydantic_core import CoreSchema, core_schema
from pydantic import GetCoreSchemaHandler, TypeAdapter
class Username(str):
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(cls, handler(str))
ta = TypeAdapter(Username)
res = ta.validate_python('abc')
assert isinstance(res, Username)
assert res == 'abc'
See JSON Schema for more details on how to customize JSON schemas for custom types.
As an annotation¶
Often you'll want to parametrize your custom type by more than just generic type parameters (which you can do via the type system and will be discussed later). Or you may not actually care (or want to) make an instance of your subclass; you actually want the original type, just with some extra validation done.
For example, if you were to implement pydantic.AfterValidator
(see Adding validation and serialization) yourself, you'd do something similar to the following:
from dataclasses import dataclass
from typing import Any, Callable
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
@dataclass(frozen=True) # (1)!
class MyAfterValidator:
func: Callable[[Any], Any]
def __get_pydantic_core_schema__(
self, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
self.func, handler(source_type)
)
Username = Annotated[str, MyAfterValidator(str.lower)]
class Model(BaseModel):
name: Username
assert Model(name='ABC').name == 'abc' # (2)!
- The
frozen=True
specification makesMyAfterValidator
hashable. Without this, a union such asUsername | None
will raise an error. - Notice that type checkers will not complain about assigning
'ABC'
toUsername
like they did in the previous example because they do not considerUsername
to be a distinct type fromstr
.
from dataclasses import dataclass
from typing import Any, Callable
from pydantic_core import CoreSchema, core_schema
from typing import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
@dataclass(frozen=True) # (1)!
class MyAfterValidator:
func: Callable[[Any], Any]
def __get_pydantic_core_schema__(
self, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
self.func, handler(source_type)
)
Username = Annotated[str, MyAfterValidator(str.lower)]
class Model(BaseModel):
name: Username
assert Model(name='ABC').name == 'abc' # (2)!
- The
frozen=True
specification makesMyAfterValidator
hashable. Without this, a union such asUsername | None
will raise an error. - Notice that type checkers will not complain about assigning
'ABC'
toUsername
like they did in the previous example because they do not considerUsername
to be a distinct type fromstr
.
from dataclasses import dataclass
from typing import Any
from collections.abc import Callable
from pydantic_core import CoreSchema, core_schema
from typing import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
@dataclass(frozen=True) # (1)!
class MyAfterValidator:
func: Callable[[Any], Any]
def __get_pydantic_core_schema__(
self, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
self.func, handler(source_type)
)
Username = Annotated[str, MyAfterValidator(str.lower)]
class Model(BaseModel):
name: Username
assert Model(name='ABC').name == 'abc' # (2)!
- The
frozen=True
specification makesMyAfterValidator
hashable. Without this, a union such asUsername | None
will raise an error. - Notice that type checkers will not complain about assigning
'ABC'
toUsername
like they did in the previous example because they do not considerUsername
to be a distinct type fromstr
.
Handling third-party types¶
Another use case for the pattern in the previous section is to handle third party types.
from typing import Any
from pydantic_core import core_schema
from typing_extensions import Annotated
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
GetJsonSchemaHandler,
ValidationError,
)
from pydantic.json_schema import JsonSchemaValue
class ThirdPartyType:
"""
This is meant to represent a type from a third-party library that wasn't designed with Pydantic
integration in mind, and so doesn't have a `pydantic_core.CoreSchema` or anything.
"""
x: int
def __init__(self):
self.x = 0
class _ThirdPartyTypePydanticAnnotation:
@classmethod
def __get_pydantic_core_schema__(
cls,
_source_type: Any,
_handler: GetCoreSchemaHandler,
) -> core_schema.CoreSchema:
"""
We return a pydantic_core.CoreSchema that behaves in the following ways:
* ints will be parsed as `ThirdPartyType` instances with the int as the x attribute
* `ThirdPartyType` instances will be parsed as `ThirdPartyType` instances without any changes
* Nothing else will pass validation
* Serialization will always return just an int
"""
def validate_from_int(value: int) -> ThirdPartyType:
result = ThirdPartyType()
result.x = value
return result
from_int_schema = core_schema.chain_schema(
[
core_schema.int_schema(),
core_schema.no_info_plain_validator_function(validate_from_int),
]
)
return core_schema.json_or_python_schema(
json_schema=from_int_schema,
python_schema=core_schema.union_schema(
[
# check if it's an instance first before doing any further work
core_schema.is_instance_schema(ThirdPartyType),
from_int_schema,
]
),
serialization=core_schema.plain_serializer_function_ser_schema(
lambda instance: instance.x
),
)
@classmethod
def __get_pydantic_json_schema__(
cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
# Use the same schema that would be used for `int`
return handler(core_schema.int_schema())
# We now create an `Annotated` wrapper that we'll use as the annotation for fields on `BaseModel`s, etc.
PydanticThirdPartyType = Annotated[
ThirdPartyType, _ThirdPartyTypePydanticAnnotation
]
# Create a model class that uses this annotation as a field
class Model(BaseModel):
third_party_type: PydanticThirdPartyType
# Demonstrate that this field is handled correctly, that ints are parsed into `ThirdPartyType`, and that
# these instances are also "dumped" directly into ints as expected.
m_int = Model(third_party_type=1)
assert isinstance(m_int.third_party_type, ThirdPartyType)
assert m_int.third_party_type.x == 1
assert m_int.model_dump() == {'third_party_type': 1}
# Do the same thing where an instance of ThirdPartyType is passed in
instance = ThirdPartyType()
assert instance.x == 0
instance.x = 10
m_instance = Model(third_party_type=instance)
assert isinstance(m_instance.third_party_type, ThirdPartyType)
assert m_instance.third_party_type.x == 10
assert m_instance.model_dump() == {'third_party_type': 10}
# Demonstrate that validation errors are raised as expected for invalid inputs
try:
Model(third_party_type='a')
except ValidationError as e:
print(e)
"""
2 validation errors for Model
third_party_type.is-instance[ThirdPartyType]
Input should be an instance of ThirdPartyType [type=is_instance_of, input_value='a', input_type=str]
third_party_type.chain[int,function-plain[validate_from_int()]]
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
"""
assert Model.model_json_schema() == {
'properties': {
'third_party_type': {'title': 'Third Party Type', 'type': 'integer'}
},
'required': ['third_party_type'],
'title': 'Model',
'type': 'object',
}
from typing import Any
from pydantic_core import core_schema
from typing import Annotated
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
GetJsonSchemaHandler,
ValidationError,
)
from pydantic.json_schema import JsonSchemaValue
class ThirdPartyType:
"""
This is meant to represent a type from a third-party library that wasn't designed with Pydantic
integration in mind, and so doesn't have a `pydantic_core.CoreSchema` or anything.
"""
x: int
def __init__(self):
self.x = 0
class _ThirdPartyTypePydanticAnnotation:
@classmethod
def __get_pydantic_core_schema__(
cls,
_source_type: Any,
_handler: GetCoreSchemaHandler,
) -> core_schema.CoreSchema:
"""
We return a pydantic_core.CoreSchema that behaves in the following ways:
* ints will be parsed as `ThirdPartyType` instances with the int as the x attribute
* `ThirdPartyType` instances will be parsed as `ThirdPartyType` instances without any changes
* Nothing else will pass validation
* Serialization will always return just an int
"""
def validate_from_int(value: int) -> ThirdPartyType:
result = ThirdPartyType()
result.x = value
return result
from_int_schema = core_schema.chain_schema(
[
core_schema.int_schema(),
core_schema.no_info_plain_validator_function(validate_from_int),
]
)
return core_schema.json_or_python_schema(
json_schema=from_int_schema,
python_schema=core_schema.union_schema(
[
# check if it's an instance first before doing any further work
core_schema.is_instance_schema(ThirdPartyType),
from_int_schema,
]
),
serialization=core_schema.plain_serializer_function_ser_schema(
lambda instance: instance.x
),
)
@classmethod
def __get_pydantic_json_schema__(
cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
# Use the same schema that would be used for `int`
return handler(core_schema.int_schema())
# We now create an `Annotated` wrapper that we'll use as the annotation for fields on `BaseModel`s, etc.
PydanticThirdPartyType = Annotated[
ThirdPartyType, _ThirdPartyTypePydanticAnnotation
]
# Create a model class that uses this annotation as a field
class Model(BaseModel):
third_party_type: PydanticThirdPartyType
# Demonstrate that this field is handled correctly, that ints are parsed into `ThirdPartyType`, and that
# these instances are also "dumped" directly into ints as expected.
m_int = Model(third_party_type=1)
assert isinstance(m_int.third_party_type, ThirdPartyType)
assert m_int.third_party_type.x == 1
assert m_int.model_dump() == {'third_party_type': 1}
# Do the same thing where an instance of ThirdPartyType is passed in
instance = ThirdPartyType()
assert instance.x == 0
instance.x = 10
m_instance = Model(third_party_type=instance)
assert isinstance(m_instance.third_party_type, ThirdPartyType)
assert m_instance.third_party_type.x == 10
assert m_instance.model_dump() == {'third_party_type': 10}
# Demonstrate that validation errors are raised as expected for invalid inputs
try:
Model(third_party_type='a')
except ValidationError as e:
print(e)
"""
2 validation errors for Model
third_party_type.is-instance[ThirdPartyType]
Input should be an instance of ThirdPartyType [type=is_instance_of, input_value='a', input_type=str]
third_party_type.chain[int,function-plain[validate_from_int()]]
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
"""
assert Model.model_json_schema() == {
'properties': {
'third_party_type': {'title': 'Third Party Type', 'type': 'integer'}
},
'required': ['third_party_type'],
'title': 'Model',
'type': 'object',
}
You can use this approach to e.g. define behavior for Pandas or Numpy types.
Using GetPydanticSchema
to reduce boilerplate¶
API Documentation
You may notice that the above examples where we create a marker class require a good amount of boilerplate.
For many simple cases you can greatly minimize this by using pydantic.GetPydanticSchema
:
from pydantic_core import core_schema
from typing_extensions import Annotated
from pydantic import BaseModel, GetPydanticSchema
class Model(BaseModel):
y: Annotated[
str,
GetPydanticSchema(
lambda tp, handler: core_schema.no_info_after_validator_function(
lambda x: x * 2, handler(tp)
)
),
]
assert Model(y='ab').y == 'abab'
from pydantic_core import core_schema
from typing import Annotated
from pydantic import BaseModel, GetPydanticSchema
class Model(BaseModel):
y: Annotated[
str,
GetPydanticSchema(
lambda tp, handler: core_schema.no_info_after_validator_function(
lambda x: x * 2, handler(tp)
)
),
]
assert Model(y='ab').y == 'abab'
Summary¶
Let's recap:
- Pydantic provides high level hooks to customize types via
Annotated
likeAfterValidator
andField
. Use these when possible. - Under the hood these use
pydantic-core
to customize validation, and you can hook into that directly usingGetPydanticSchema
or a marker class with__get_pydantic_core_schema__
. - If you really want a custom type you can implement
__get_pydantic_core_schema__
on the type itself.
Handling custom generic classes¶
Warning
This is an advanced technique that you might not need in the beginning. In most of the cases you will probably be fine with standard Pydantic models.
You can use
Generic Classes as
field types and perform custom validation based on the "type parameters" (or sub-types)
with __get_pydantic_core_schema__
.
If the Generic class that you are using as a sub-type has a classmethod
__get_pydantic_core_schema__
, you don't need to use
arbitrary_types_allowed
for it to work.
Because the source_type
parameter is not the same as the cls
parameter, you can use typing.get_args
(or typing_extensions.get_args
) to extract the generic parameters.
Then you can use the handler
to generate a schema for them by calling handler.generate_schema
.
Note that we do not do something like handler(get_args(source_type)[0])
because we want to generate an unrelated
schema for that generic parameter, not one that is influenced by the current context of Annotated
metadata and such.
This is less important for custom types, but crucial for annotated metadata that modifies schema building.
from dataclasses import dataclass
from typing import Any, Generic, TypeVar
from pydantic_core import CoreSchema, core_schema
from typing_extensions import get_args, get_origin
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
ValidationError,
ValidatorFunctionWrapHandler,
)
ItemType = TypeVar('ItemType')
# This is not a pydantic model, it's an arbitrary generic class
@dataclass
class Owner(Generic[ItemType]):
name: str
item: ItemType
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
origin = get_origin(source_type)
if origin is None: # used as `x: Owner` without params
origin = source_type
item_tp = Any
else:
item_tp = get_args(source_type)[0]
# both calling handler(...) and handler.generate_schema(...)
# would work, but prefer the latter for conceptual and consistency reasons
item_schema = handler.generate_schema(item_tp)
def val_item(
v: Owner[Any], handler: ValidatorFunctionWrapHandler
) -> Owner[Any]:
v.item = handler(v.item)
return v
python_schema = core_schema.chain_schema(
# `chain_schema` means do the following steps in order:
[
# Ensure the value is an instance of Owner
core_schema.is_instance_schema(cls),
# Use the item_schema to validate `items`
core_schema.no_info_wrap_validator_function(
val_item, item_schema
),
]
)
return core_schema.json_or_python_schema(
# for JSON accept an object with name and item keys
json_schema=core_schema.chain_schema(
[
core_schema.typed_dict_schema(
{
'name': core_schema.typed_dict_field(
core_schema.str_schema()
),
'item': core_schema.typed_dict_field(item_schema),
}
),
# after validating the json data convert it to python
core_schema.no_info_before_validator_function(
lambda data: Owner(
name=data['name'], item=data['item']
),
# note that we reuse the same schema here as below
python_schema,
),
]
),
python_schema=python_schema,
)
class Car(BaseModel):
color: str
class House(BaseModel):
rooms: int
class Model(BaseModel):
car_owner: Owner[Car]
home_owner: Owner[House]
model = Model(
car_owner=Owner(name='John', item=Car(color='black')),
home_owner=Owner(name='James', item=House(rooms=3)),
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""
try:
# If the values of the sub-types are invalid, we get an error
Model(
car_owner=Owner(name='John', item=House(rooms=3)),
home_owner=Owner(name='James', item=Car(color='black')),
)
except ValidationError as e:
print(e)
"""
2 validation errors for Model
wine
Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='Kinda good', input_type=str]
cheese
Input should be a valid boolean, unable to interpret input [type=bool_parsing, input_value='yeah', input_type=str]
"""
# Similarly with JSON
model = Model.model_validate_json(
'{"car_owner":{"name":"John","item":{"color":"black"}},"home_owner":{"name":"James","item":{"rooms":3}}}'
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""
try:
Model.model_validate_json(
'{"car_owner":{"name":"John","item":{"rooms":3}},"home_owner":{"name":"James","item":{"color":"black"}}}'
)
except ValidationError as e:
print(e)
"""
2 validation errors for Model
car_owner.item.color
Field required [type=missing, input_value={'rooms': 3}, input_type=dict]
home_owner.item.rooms
Field required [type=missing, input_value={'color': 'black'}, input_type=dict]
"""
from dataclasses import dataclass
from typing import Any, Generic, TypeVar
from pydantic_core import CoreSchema, core_schema
from typing import get_args, get_origin
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
ValidationError,
ValidatorFunctionWrapHandler,
)
ItemType = TypeVar('ItemType')
# This is not a pydantic model, it's an arbitrary generic class
@dataclass
class Owner(Generic[ItemType]):
name: str
item: ItemType
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
origin = get_origin(source_type)
if origin is None: # used as `x: Owner` without params
origin = source_type
item_tp = Any
else:
item_tp = get_args(source_type)[0]
# both calling handler(...) and handler.generate_schema(...)
# would work, but prefer the latter for conceptual and consistency reasons
item_schema = handler.generate_schema(item_tp)
def val_item(
v: Owner[Any], handler: ValidatorFunctionWrapHandler
) -> Owner[Any]:
v.item = handler(v.item)
return v
python_schema = core_schema.chain_schema(
# `chain_schema` means do the following steps in order:
[
# Ensure the value is an instance of Owner
core_schema.is_instance_schema(cls),
# Use the item_schema to validate `items`
core_schema.no_info_wrap_validator_function(
val_item, item_schema
),
]
)
return core_schema.json_or_python_schema(
# for JSON accept an object with name and item keys
json_schema=core_schema.chain_schema(
[
core_schema.typed_dict_schema(
{
'name': core_schema.typed_dict_field(
core_schema.str_schema()
),
'item': core_schema.typed_dict_field(item_schema),
}
),
# after validating the json data convert it to python
core_schema.no_info_before_validator_function(
lambda data: Owner(
name=data['name'], item=data['item']
),
# note that we reuse the same schema here as below
python_schema,
),
]
),
python_schema=python_schema,
)
class Car(BaseModel):
color: str
class House(BaseModel):
rooms: int
class Model(BaseModel):
car_owner: Owner[Car]
home_owner: Owner[House]
model = Model(
car_owner=Owner(name='John', item=Car(color='black')),
home_owner=Owner(name='James', item=House(rooms=3)),
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""
try:
# If the values of the sub-types are invalid, we get an error
Model(
car_owner=Owner(name='John', item=House(rooms=3)),
home_owner=Owner(name='James', item=Car(color='black')),
)
except ValidationError as e:
print(e)
"""
2 validation errors for Model
wine
Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='Kinda good', input_type=str]
cheese
Input should be a valid boolean, unable to interpret input [type=bool_parsing, input_value='yeah', input_type=str]
"""
# Similarly with JSON
model = Model.model_validate_json(
'{"car_owner":{"name":"John","item":{"color":"black"}},"home_owner":{"name":"James","item":{"rooms":3}}}'
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""
try:
Model.model_validate_json(
'{"car_owner":{"name":"John","item":{"rooms":3}},"home_owner":{"name":"James","item":{"color":"black"}}}'
)
except ValidationError as e:
print(e)
"""
2 validation errors for Model
car_owner.item.color
Field required [type=missing, input_value={'rooms': 3}, input_type=dict]
home_owner.item.rooms
Field required [type=missing, input_value={'color': 'black'}, input_type=dict]
"""
Generic containers¶
The same idea can be applied to create generic container types, like a custom Sequence
type:
from typing import Any, Sequence, TypeVar
from pydantic_core import ValidationError, core_schema
from typing_extensions import get_args
from pydantic import BaseModel, GetCoreSchemaHandler
T = TypeVar('T')
class MySequence(Sequence[T]):
def __init__(self, v: Sequence[T]):
self.v = v
def __getitem__(self, i):
return self.v[i]
def __len__(self):
return len(self.v)
@classmethod
def __get_pydantic_core_schema__(
cls, source: Any, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
instance_schema = core_schema.is_instance_schema(cls)
args = get_args(source)
if args:
# replace the type and rely on Pydantic to generate the right schema
# for `Sequence`
sequence_t_schema = handler.generate_schema(Sequence[args[0]])
else:
sequence_t_schema = handler.generate_schema(Sequence)
non_instance_schema = core_schema.no_info_after_validator_function(
MySequence, sequence_t_schema
)
return core_schema.union_schema([instance_schema, non_instance_schema])
class M(BaseModel):
model_config = dict(validate_default=True)
s1: MySequence = [3]
m = M()
print(m)
#> s1=<__main__.MySequence object at 0x0123456789ab>
print(m.s1.v)
#> [3]
class M(BaseModel):
s1: MySequence[int]
M(s1=[1])
try:
M(s1=['a'])
except ValidationError as exc:
print(exc)
"""
2 validation errors for M
s1.is-instance[MySequence]
Input should be an instance of MySequence [type=is_instance_of, input_value=['a'], input_type=list]
s1.function-after[MySequence(), json-or-python[json=list[int],python=chain[is-instance[Sequence],function-wrap[sequence_validator()]]]].0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
"""
from typing import Any, TypeVar
from collections.abc import Sequence
from pydantic_core import ValidationError, core_schema
from typing_extensions import get_args
from pydantic import BaseModel, GetCoreSchemaHandler
T = TypeVar('T')
class MySequence(Sequence[T]):
def __init__(self, v: Sequence[T]):
self.v = v
def __getitem__(self, i):
return self.v[i]
def __len__(self):
return len(self.v)
@classmethod
def __get_pydantic_core_schema__(
cls, source: Any, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
instance_schema = core_schema.is_instance_schema(cls)
args = get_args(source)
if args:
# replace the type and rely on Pydantic to generate the right schema
# for `Sequence`
sequence_t_schema = handler.generate_schema(Sequence[args[0]])
else:
sequence_t_schema = handler.generate_schema(Sequence)
non_instance_schema = core_schema.no_info_after_validator_function(
MySequence, sequence_t_schema
)
return core_schema.union_schema([instance_schema, non_instance_schema])
class M(BaseModel):
model_config = dict(validate_default=True)
s1: MySequence = [3]
m = M()
print(m)
#> s1=<__main__.MySequence object at 0x0123456789ab>
print(m.s1.v)
#> [3]
class M(BaseModel):
s1: MySequence[int]
M(s1=[1])
try:
M(s1=['a'])
except ValidationError as exc:
print(exc)
"""
2 validation errors for M
s1.is-instance[MySequence]
Input should be an instance of MySequence [type=is_instance_of, input_value=['a'], input_type=list]
s1.function-after[MySequence(), json-or-python[json=list[int],python=chain[is-instance[Sequence],function-wrap[sequence_validator()]]]].0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
"""
from typing import Any, TypeVar
from collections.abc import Sequence
from pydantic_core import ValidationError, core_schema
from typing import get_args
from pydantic import BaseModel, GetCoreSchemaHandler
T = TypeVar('T')
class MySequence(Sequence[T]):
def __init__(self, v: Sequence[T]):
self.v = v
def __getitem__(self, i):
return self.v[i]
def __len__(self):
return len(self.v)
@classmethod
def __get_pydantic_core_schema__(
cls, source: Any, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
instance_schema = core_schema.is_instance_schema(cls)
args = get_args(source)
if args:
# replace the type and rely on Pydantic to generate the right schema
# for `Sequence`
sequence_t_schema = handler.generate_schema(Sequence[args[0]])
else:
sequence_t_schema = handler.generate_schema(Sequence)
non_instance_schema = core_schema.no_info_after_validator_function(
MySequence, sequence_t_schema
)
return core_schema.union_schema([instance_schema, non_instance_schema])
class M(BaseModel):
model_config = dict(validate_default=True)
s1: MySequence = [3]
m = M()
print(m)
#> s1=<__main__.MySequence object at 0x0123456789ab>
print(m.s1.v)
#> [3]
class M(BaseModel):
s1: MySequence[int]
M(s1=[1])
try:
M(s1=['a'])
except ValidationError as exc:
print(exc)
"""
2 validation errors for M
s1.is-instance[MySequence]
Input should be an instance of MySequence [type=is_instance_of, input_value=['a'], input_type=list]
s1.function-after[MySequence(), json-or-python[json=list[int],python=chain[is-instance[Sequence],function-wrap[sequence_validator()]]]].0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
"""
Access to field name¶
Note
This was not possible with Pydantic V2 to V2.3, it was re-added in Pydantic V2.4.
As of Pydantic V2.4, you can access the field name via the handler.field_name
within __get_pydantic_core_schema__
and thereby set the field name which will be available from info.field_name
.
from typing import Any
from pydantic_core import core_schema
from pydantic import BaseModel, GetCoreSchemaHandler, ValidationInfo
class CustomType:
"""Custom type that stores the field it was used in."""
def __init__(self, value: int, field_name: str):
self.value = value
self.field_name = field_name
def __repr__(self):
return f'CustomType<{self.value} {self.field_name!r}>'
@classmethod
def validate(cls, value: int, info: ValidationInfo):
return cls(value, info.field_name)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
return core_schema.with_info_after_validator_function(
cls.validate, handler(int), field_name=handler.field_name
)
class MyModel(BaseModel):
my_field: CustomType
m = MyModel(my_field=1)
print(m.my_field)
#> CustomType<1 'my_field'>
You can also access field_name
from the markers used with Annotated
, like AfterValidator
.
from typing_extensions import Annotated
from pydantic import AfterValidator, BaseModel, ValidationInfo
def my_validators(value: int, info: ValidationInfo):
return f'<{value} {info.field_name!r}>'
class MyModel(BaseModel):
my_field: Annotated[int, AfterValidator(my_validators)]
m = MyModel(my_field=1)
print(m.my_field)
#> <1 'my_field'>
from typing import Annotated
from pydantic import AfterValidator, BaseModel, ValidationInfo
def my_validators(value: int, info: ValidationInfo):
return f'<{value} {info.field_name!r}>'
class MyModel(BaseModel):
my_field: Annotated[int, AfterValidator(my_validators)]
m = MyModel(my_field=1)
print(m.my_field)
#> <1 'my_field'>