Configuration
Configuration for Pydantic models.
ConfigDict ¶
Bases: TypedDict
A TypedDict for configuring Pydantic behaviour.
title
instance-attribute
¶
title: str | None
The title for the generated JSON schema, defaults to the model's name
model_title_generator
instance-attribute
¶
A callable that takes a model class and returns the title for it. Defaults to None
.
field_title_generator
instance-attribute
¶
field_title_generator: (
Callable[[str, FieldInfo | ComputedFieldInfo], str]
| None
)
A callable that takes a field's name and info and returns title for it. Defaults to None
.
str_to_lower
instance-attribute
¶
str_to_lower: bool
Whether to convert all characters to lowercase for str types. Defaults to False
.
str_to_upper
instance-attribute
¶
str_to_upper: bool
Whether to convert all characters to uppercase for str types. Defaults to False
.
str_strip_whitespace
instance-attribute
¶
str_strip_whitespace: bool
Whether to strip leading and trailing whitespace for str types.
str_min_length
instance-attribute
¶
str_min_length: int
The minimum length for str types. Defaults to None
.
str_max_length
instance-attribute
¶
str_max_length: int | None
The maximum length for str types. Defaults to None
.
extra
instance-attribute
¶
extra: ExtraValues | None
Whether to ignore, allow, or forbid extra attributes during model initialization. Defaults to 'ignore'
.
You can configure how pydantic handles the attributes that are not defined in the model:
allow
- Allow any extra attributes.forbid
- Forbid any extra attributes.ignore
- Ignore any extra attributes.
from pydantic import BaseModel, ConfigDict
class User(BaseModel):
model_config = ConfigDict(extra='ignore') # (1)!
name: str
user = User(name='John Doe', age=20) # (2)!
print(user)
#> name='John Doe'
- This is the default behaviour.
- The
age
argument is ignored.
Instead, with extra='allow'
, the age
argument is included:
from pydantic import BaseModel, ConfigDict
class User(BaseModel):
model_config = ConfigDict(extra='allow')
name: str
user = User(name='John Doe', age=20) # (1)!
print(user)
#> name='John Doe' age=20
- The
age
argument is included.
With extra='forbid'
, an error is raised:
from pydantic import BaseModel, ConfigDict, ValidationError
class User(BaseModel):
model_config = ConfigDict(extra='forbid')
name: str
try:
User(name='John Doe', age=20)
except ValidationError as e:
print(e)
'''
1 validation error for User
age
Extra inputs are not permitted [type=extra_forbidden, input_value=20, input_type=int]
'''
frozen
instance-attribute
¶
frozen: bool
Whether models are faux-immutable, i.e. whether __setattr__
is allowed, and also generates
a __hash__()
method for the model. This makes instances of the model potentially hashable if all the
attributes are hashable. Defaults to False
.
Note
On V1, the inverse of this setting was called allow_mutation
, and was True
by default.
populate_by_name
instance-attribute
¶
populate_by_name: bool
Whether an aliased field may be populated by its name as given by the model
attribute, as well as the alias. Defaults to False
.
Note
The name of this configuration setting was changed in v2.0 from
allow_population_by_field_name
to populate_by_name
.
from pydantic import BaseModel, ConfigDict, Field
class User(BaseModel):
model_config = ConfigDict(populate_by_name=True)
name: str = Field(alias='full_name') # (1)!
age: int
user = User(full_name='John Doe', age=20) # (2)!
print(user)
#> name='John Doe' age=20
user = User(name='John Doe', age=20) # (3)!
print(user)
#> name='John Doe' age=20
- The field
'name'
has an alias'full_name'
. - The model is populated by the alias
'full_name'
. - The model is populated by the field name
'name'
.
use_enum_values
instance-attribute
¶
use_enum_values: bool
Whether to populate models with the value
property of enums, rather than the raw enum.
This may be useful if you want to serialize model.model_dump()
later. Defaults to False
.
Note
If you have an Optional[Enum]
value that you set a default for, you need to use validate_default=True
for said Field to ensure that the use_enum_values
flag takes effect on the default, as extracting an
enum's value occurs during validation, not serialization.
from enum import Enum
from typing import Optional
from pydantic import BaseModel, ConfigDict, Field
class SomeEnum(Enum):
FOO = 'foo'
BAR = 'bar'
BAZ = 'baz'
class SomeModel(BaseModel):
model_config = ConfigDict(use_enum_values=True)
some_enum: SomeEnum
another_enum: Optional[SomeEnum] = Field(
default=SomeEnum.FOO, validate_default=True
)
model1 = SomeModel(some_enum=SomeEnum.BAR)
print(model1.model_dump())
#> {'some_enum': 'bar', 'another_enum': 'foo'}
model2 = SomeModel(some_enum=SomeEnum.BAR, another_enum=SomeEnum.BAZ)
print(model2.model_dump())
#> {'some_enum': 'bar', 'another_enum': 'baz'}
validate_assignment
instance-attribute
¶
validate_assignment: bool
Whether to validate the data when the model is changed. Defaults to False
.
The default behavior of Pydantic is to validate the data when the model is created.
In case the user changes the data after the model is created, the model is not revalidated.
from pydantic import BaseModel
class User(BaseModel):
name: str
user = User(name='John Doe') # (1)!
print(user)
#> name='John Doe'
user.name = 123 # (1)!
print(user)
#> name=123
- The validation happens only when the model is created.
- The validation does not happen when the data is changed.
In case you want to revalidate the model when the data is changed, you can use validate_assignment=True
:
from pydantic import BaseModel, ValidationError
class User(BaseModel, validate_assignment=True): # (1)!
name: str
user = User(name='John Doe') # (2)!
print(user)
#> name='John Doe'
try:
user.name = 123 # (3)!
except ValidationError as e:
print(e)
'''
1 validation error for User
name
Input should be a valid string [type=string_type, input_value=123, input_type=int]
'''
- You can either use class keyword arguments, or
model_config
to setvalidate_assignment=True
. - The validation happens when the model is created.
- The validation also happens when the data is changed.
arbitrary_types_allowed
instance-attribute
¶
arbitrary_types_allowed: bool
Whether arbitrary types are allowed for field types. Defaults to False
.
from pydantic import BaseModel, ConfigDict, ValidationError
# This is not a pydantic model, it's an arbitrary class
class Pet:
def __init__(self, name: str):
self.name = name
class Model(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
pet: Pet
owner: str
pet = Pet(name='Hedwig')
# A simple check of instance type is used to validate the data
model = Model(owner='Harry', pet=pet)
print(model)
#> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry'
print(model.pet)
#> <__main__.Pet object at 0x0123456789ab>
print(model.pet.name)
#> Hedwig
print(type(model.pet))
#> <class '__main__.Pet'>
try:
# If the value is not an instance of the type, it's invalid
Model(owner='Harry', pet='Hedwig')
except ValidationError as e:
print(e)
'''
1 validation error for Model
pet
Input should be an instance of Pet [type=is_instance_of, input_value='Hedwig', input_type=str]
'''
# Nothing in the instance of the arbitrary type is checked
# Here name probably should have been a str, but it's not validated
pet2 = Pet(name=42)
model2 = Model(owner='Harry', pet=pet2)
print(model2)
#> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry'
print(model2.pet)
#> <__main__.Pet object at 0x0123456789ab>
print(model2.pet.name)
#> 42
print(type(model2.pet))
#> <class '__main__.Pet'>
from_attributes
instance-attribute
¶
from_attributes: bool
Whether to build models and look up discriminators of tagged unions using python object attributes.
loc_by_alias
instance-attribute
¶
loc_by_alias: bool
Whether to use the actual key provided in the data (e.g. alias) for error loc
s rather than the field's name. Defaults to True
.
alias_generator
instance-attribute
¶
alias_generator: (
Callable[[str], str] | AliasGenerator | None
)
A callable that takes a field name and returns an alias for it
or an instance of AliasGenerator
. Defaults to None
.
When using a callable, the alias generator is used for both validation and serialization.
If you want to use different alias generators for validation and serialization, you can use
AliasGenerator
instead.
If data source field names do not match your code style (e. g. CamelCase fields),
you can automatically generate aliases using alias_generator
. Here's an example with
a basic callable:
from pydantic import BaseModel, ConfigDict
from pydantic.alias_generators import to_pascal
class Voice(BaseModel):
model_config = ConfigDict(alias_generator=to_pascal)
name: str
language_code: str
voice = Voice(Name='Filiz', LanguageCode='tr-TR')
print(voice.language_code)
#> tr-TR
print(voice.model_dump(by_alias=True))
#> {'Name': 'Filiz', 'LanguageCode': 'tr-TR'}
If you want to use different alias generators for validation and serialization, you can use
AliasGenerator
.
from pydantic import AliasGenerator, BaseModel, ConfigDict
from pydantic.alias_generators import to_camel, to_pascal
class Athlete(BaseModel):
first_name: str
last_name: str
sport: str
model_config = ConfigDict(
alias_generator=AliasGenerator(
validation_alias=to_camel,
serialization_alias=to_pascal,
)
)
athlete = Athlete(firstName='John', lastName='Doe', sport='track')
print(athlete.model_dump(by_alias=True))
#> {'FirstName': 'John', 'LastName': 'Doe', 'Sport': 'track'}
ignored_types
instance-attribute
¶
A tuple of types that may occur as values of class attributes without annotations. This is
typically used for custom descriptors (classes that behave like property
). If an attribute is set on a
class without an annotation and has a type that is not in this tuple (or otherwise recognized by
pydantic), an error will be raised. Defaults to ()
.
allow_inf_nan
instance-attribute
¶
allow_inf_nan: bool
Whether to allow infinity (+inf
an -inf
) and NaN values to float and decimal fields. Defaults to True
.
json_schema_extra
instance-attribute
¶
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None
A dict or callable to provide extra JSON schema properties. Defaults to None
.
json_encoders
instance-attribute
¶
A dict
of custom JSON encoders for specific types. Defaults to None
.
Deprecated
This config option is a carryover from v1. We originally planned to remove it in v2 but didn't have a 1:1 replacement so we are keeping it for now. It is still deprecated and will likely be removed in the future.
strict
instance-attribute
¶
strict: bool
(new in V2) If True
, strict validation is applied to all fields on the model.
By default, Pydantic attempts to coerce values to the correct type, when possible.
There are situations in which you may want to disable this behavior, and instead raise an error if a value's type does not match the field's type annotation.
To configure strict mode for all fields on a model, you can set strict=True
on the model.
from pydantic import BaseModel, ConfigDict
class Model(BaseModel):
model_config = ConfigDict(strict=True)
name: str
age: int
See Strict Mode for more details.
See the Conversion Table for more details on how Pydantic converts data in both strict and lax modes.
revalidate_instances
instance-attribute
¶
revalidate_instances: Literal[
"always", "never", "subclass-instances"
]
When and how to revalidate models and dataclasses during validation. Accepts the string
values of 'never'
, 'always'
and 'subclass-instances'
. Defaults to 'never'
.
'never'
will not revalidate models and dataclasses during validation'always'
will revalidate models and dataclasses during validation'subclass-instances'
will revalidate models and dataclasses during validation if the instance is a subclass of the model or dataclass
By default, model and dataclass instances are not revalidated during validation.
from typing import List
from pydantic import BaseModel
class User(BaseModel, revalidate_instances='never'): # (1)!
hobbies: List[str]
class SubUser(User):
sins: List[str]
class Transaction(BaseModel):
user: User
my_user = User(hobbies=['reading'])
t = Transaction(user=my_user)
print(t)
#> user=User(hobbies=['reading'])
my_user.hobbies = [1] # (2)!
t = Transaction(user=my_user) # (3)!
print(t)
#> user=User(hobbies=[1])
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
t = Transaction(user=my_sub_user)
print(t)
#> user=SubUser(hobbies=['scuba diving'], sins=['lying'])
revalidate_instances
is set to'never'
by **default.- The assignment is not validated, unless you set
validate_assignment
toTrue
in the model's config. - Since
revalidate_instances
is set tonever
, this is not revalidated.
If you want to revalidate instances during validation, you can set revalidate_instances
to 'always'
in the model's config.
from typing import List
from pydantic import BaseModel, ValidationError
class User(BaseModel, revalidate_instances='always'): # (1)!
hobbies: List[str]
class SubUser(User):
sins: List[str]
class Transaction(BaseModel):
user: User
my_user = User(hobbies=['reading'])
t = Transaction(user=my_user)
print(t)
#> user=User(hobbies=['reading'])
my_user.hobbies = [1]
try:
t = Transaction(user=my_user) # (2)!
except ValidationError as e:
print(e)
'''
1 validation error for Transaction
user.hobbies.0
Input should be a valid string [type=string_type, input_value=1, input_type=int]
'''
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
t = Transaction(user=my_sub_user)
print(t) # (3)!
#> user=User(hobbies=['scuba diving'])
revalidate_instances
is set to'always'
.- The model is revalidated, since
revalidate_instances
is set to'always'
. - Using
'never'
we would have gottenuser=SubUser(hobbies=['scuba diving'], sins=['lying'])
.
It's also possible to set revalidate_instances
to 'subclass-instances'
to only revalidate instances
of subclasses of the model.
from typing import List
from pydantic import BaseModel
class User(BaseModel, revalidate_instances='subclass-instances'): # (1)!
hobbies: List[str]
class SubUser(User):
sins: List[str]
class Transaction(BaseModel):
user: User
my_user = User(hobbies=['reading'])
t = Transaction(user=my_user)
print(t)
#> user=User(hobbies=['reading'])
my_user.hobbies = [1]
t = Transaction(user=my_user) # (2)!
print(t)
#> user=User(hobbies=[1])
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
t = Transaction(user=my_sub_user)
print(t) # (3)!
#> user=User(hobbies=['scuba diving'])
revalidate_instances
is set to'subclass-instances'
.- This is not revalidated, since
my_user
is not a subclass ofUser
. - Using
'never'
we would have gottenuser=SubUser(hobbies=['scuba diving'], sins=['lying'])
.
ser_json_timedelta
instance-attribute
¶
ser_json_timedelta: Literal['iso8601', 'float']
The format of JSON serialized timedeltas. Accepts the string values of 'iso8601'
and
'float'
. Defaults to 'iso8601'
.
'iso8601'
will serialize timedeltas to ISO 8601 durations.'float'
will serialize timedeltas to the total number of seconds.
ser_json_bytes
instance-attribute
¶
ser_json_bytes: Literal['utf8', 'base64', 'hex']
The encoding of JSON serialized bytes. Defaults to 'utf8'
.
Set equal to val_json_bytes
to get back an equal value after serialization round trip.
'utf8'
will serialize bytes to UTF-8 strings.'base64'
will serialize bytes to URL safe base64 strings.'hex'
will serialize bytes to hexadecimal strings.
val_json_bytes
instance-attribute
¶
val_json_bytes: Literal['utf8', 'base64', 'hex']
The encoding of JSON serialized bytes to decode. Defaults to 'utf8'
.
Set equal to ser_json_bytes
to get back an equal value after serialization round trip.
'utf8'
will deserialize UTF-8 strings to bytes.'base64'
will deserialize URL safe base64 strings to bytes.'hex'
will deserialize hexadecimal strings to bytes.
ser_json_inf_nan
instance-attribute
¶
ser_json_inf_nan: Literal['null', 'constants', 'strings']
The encoding of JSON serialized infinity and NaN float values. Defaults to 'null'
.
'null'
will serialize infinity and NaN values asnull
.'constants'
will serialize infinity and NaN values asInfinity
andNaN
.'strings'
will serialize infinity as string"Infinity"
and NaN as string"NaN"
.
validate_default
instance-attribute
¶
validate_default: bool
Whether to validate default values during validation. Defaults to False
.
validate_return
instance-attribute
¶
validate_return: bool
Whether to validate the return value from call validators. Defaults to False
.
protected_namespaces
instance-attribute
¶
A tuple
of strings and/or patterns that prevent models from having fields with names that conflict with them.
For strings, we match on a prefix basis. Ex, if 'dog' is in the protected namespace, 'dog_name' will be protected.
For patterns, we match on the entire field name. Ex, if re.compile(r'^dog$')
is in the protected namespace, 'dog' will be protected, but 'dog_name' will not be.
Defaults to ('model_validate', 'model_dump',)
.
The reason we've selected these is to prevent collisions with other validation / dumping formats
in the future - ex, model_validate_{some_newly_supported_format}
.
Before v2.10, Pydantic used ('model_',)
as the default value for this setting to
prevent collisions between model attributes and BaseModel
's own methods. This was changed
in v2.10 given feedback that this restriction was limiting in AI and data science contexts,
where it is common to have fields with names like model_id
, model_input
, model_output
, etc.
For more details, see https://github.com/pydantic/pydantic/issues/10315.
import warnings
from pydantic import BaseModel
warnings.filterwarnings('error') # Raise warnings as errors
try:
class Model(BaseModel):
model_dump_something: str
except UserWarning as e:
print(e)
'''
Field "model_dump_something" in Model has conflict with protected namespace "model_dump".
You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('model_validate',)`.
'''
You can customize this behavior using the protected_namespaces
setting:
import re
import warnings
from pydantic import BaseModel, ConfigDict
with warnings.catch_warnings(record=True) as caught_warnings:
warnings.simplefilter('always') # Catch all warnings
class Model(BaseModel):
safe_field: str
also_protect_field: str
protect_this: str
model_config = ConfigDict(
protected_namespaces=(
'protect_me_',
'also_protect_',
re.compile('^protect_this$'),
)
)
for warning in caught_warnings:
print(f'{warning.message}')
'''
Field "also_protect_field" in Model has conflict with protected namespace "also_protect_".
You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('protect_me_', re.compile('^protect_this$'))`.
Field "protect_this" in Model has conflict with protected namespace "re.compile('^protect_this$')".
You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('protect_me_', 'also_protect_')`.
'''
While Pydantic will only emit a warning when an item is in a protected namespace but does not actually have a collision, an error is raised if there is an actual collision with an existing attribute:
from pydantic import BaseModel, ConfigDict
try:
class Model(BaseModel):
model_validate: str
model_config = ConfigDict(protected_namespaces=('model_',))
except NameError as e:
print(e)
'''
Field "model_validate" conflicts with member <bound method BaseModel.model_validate of <class 'pydantic.main.BaseModel'>> of protected namespace "model_".
'''
hide_input_in_errors
instance-attribute
¶
hide_input_in_errors: bool
Whether to hide inputs when printing errors. Defaults to False
.
Pydantic shows the input value and type when it raises ValidationError
during the validation.
from pydantic import BaseModel, ValidationError
class Model(BaseModel):
a: str
try:
Model(a=123)
except ValidationError as e:
print(e)
'''
1 validation error for Model
a
Input should be a valid string [type=string_type, input_value=123, input_type=int]
'''
You can hide the input value and type by setting the hide_input_in_errors
config to True
.
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
a: str
model_config = ConfigDict(hide_input_in_errors=True)
try:
Model(a=123)
except ValidationError as e:
print(e)
'''
1 validation error for Model
a
Input should be a valid string [type=string_type]
'''
defer_build
instance-attribute
¶
defer_build: bool
Whether to defer model validator and serializer construction until the first model validation. Defaults to False.
This can be useful to avoid the overhead of building models which are only
used nested within other models, or when you want to manually define type namespace via
Model.model_rebuild(_types_namespace=...)
.
Since v2.10, this setting also applies to pydantic dataclasses and TypeAdapter instances.
plugin_settings
instance-attribute
¶
A dict
of settings for plugins. Defaults to None
.
schema_generator
instance-attribute
¶
schema_generator: type[GenerateSchema] | None
Warning
schema_generator
is deprecated in v2.10.
Prior to v2.10, this setting was advertised as highly subject to change. It's possible that this interface may once again become public once the internal core schema generation API is more stable, but that will likely come after significant performance improvements have been made.
json_schema_serialization_defaults_required
instance-attribute
¶
json_schema_serialization_defaults_required: bool
Whether fields with default values should be marked as required in the serialization schema. Defaults to False
.
This ensures that the serialization schema will reflect the fact a field with a default will always be present when serializing the model, even though it is not required for validation.
However, there are scenarios where this may be undesirable — in particular, if you want to share the schema between validation and serialization, and don't mind fields with defaults being marked as not required during serialization. See #7209 for more details.
from pydantic import BaseModel, ConfigDict
class Model(BaseModel):
a: str = 'a'
model_config = ConfigDict(json_schema_serialization_defaults_required=True)
print(Model.model_json_schema(mode='validation'))
'''
{
'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}},
'title': 'Model',
'type': 'object',
}
'''
print(Model.model_json_schema(mode='serialization'))
'''
{
'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}},
'required': ['a'],
'title': 'Model',
'type': 'object',
}
'''
json_schema_mode_override
instance-attribute
¶
json_schema_mode_override: Literal[
"validation", "serialization", None
]
If not None
, the specified mode will be used to generate the JSON schema regardless of what mode
was passed to
the function call. Defaults to None
.
This provides a way to force the JSON schema generation to reflect a specific mode, e.g., to always use the validation schema.
It can be useful when using frameworks (such as FastAPI) that may generate different schemas for validation
and serialization that must both be referenced from the same schema; when this happens, we automatically append
-Input
to the definition reference for the validation schema and -Output
to the definition reference for the
serialization schema. By specifying a json_schema_mode_override
though, this prevents the conflict between
the validation and serialization schemas (since both will use the specified schema), and so prevents the suffixes
from being added to the definition references.
from pydantic import BaseModel, ConfigDict, Json
class Model(BaseModel):
a: Json[int] # requires a string to validate, but will dump an int
print(Model.model_json_schema(mode='serialization'))
'''
{
'properties': {'a': {'title': 'A', 'type': 'integer'}},
'required': ['a'],
'title': 'Model',
'type': 'object',
}
'''
class ForceInputModel(Model):
# the following ensures that even with mode='serialization', we
# will get the schema that would be generated for validation.
model_config = ConfigDict(json_schema_mode_override='validation')
print(ForceInputModel.model_json_schema(mode='serialization'))
'''
{
'properties': {
'a': {
'contentMediaType': 'application/json',
'contentSchema': {'type': 'integer'},
'title': 'A',
'type': 'string',
}
},
'required': ['a'],
'title': 'ForceInputModel',
'type': 'object',
}
'''
coerce_numbers_to_str
instance-attribute
¶
coerce_numbers_to_str: bool
If True
, enables automatic coercion of any Number
type to str
in "lax" (non-strict) mode. Defaults to False
.
Pydantic doesn't allow number types (int
, float
, Decimal
) to be coerced as type str
by default.
from decimal import Decimal
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
value: str
try:
print(Model(value=42))
except ValidationError as e:
print(e)
'''
1 validation error for Model
value
Input should be a valid string [type=string_type, input_value=42, input_type=int]
'''
class Model(BaseModel):
model_config = ConfigDict(coerce_numbers_to_str=True)
value: str
repr(Model(value=42).value)
#> "42"
repr(Model(value=42.13).value)
#> "42.13"
repr(Model(value=Decimal('42.13')).value)
#> "42.13"
regex_engine
instance-attribute
¶
regex_engine: Literal['rust-regex', 'python-re']
The regex engine to be used for pattern validation.
Defaults to 'rust-regex'
.
rust-regex
uses theregex
Rust crate, which is non-backtracking and therefore more DDoS resistant, but does not support all regex features.python-re
use there
module, which supports all regex features, but may be slower.
Note
If you use a compiled regex pattern, the python-re engine will be used regardless of this setting.
This is so that flags such as re.IGNORECASE
are respected.
from pydantic import BaseModel, ConfigDict, Field, ValidationError
class Model(BaseModel):
model_config = ConfigDict(regex_engine='python-re')
value: str = Field(pattern=r'^abc(?=def)')
print(Model(value='abcdef').value)
#> abcdef
try:
print(Model(value='abxyzcdef'))
except ValidationError as e:
print(e)
'''
1 validation error for Model
value
String should match pattern '^abc(?=def)' [type=string_pattern_mismatch, input_value='abxyzcdef', input_type=str]
'''
validation_error_cause
instance-attribute
¶
validation_error_cause: bool
If True
, Python exceptions that were part of a validation failure will be shown as an exception group as a cause. Can be useful for debugging. Defaults to False
.
Note
Python 3.10 and older don't support exception groups natively. <=3.10, backport must be installed: pip install exceptiongroup
.
Note
The structure of validation errors are likely to change in future Pydantic versions. Pydantic offers no guarantees about their structure. Should be used for visual traceback debugging only.
use_attribute_docstrings
instance-attribute
¶
use_attribute_docstrings: bool
Whether docstrings of attributes (bare string literals immediately following the attribute declaration)
should be used for field descriptions. Defaults to False
.
Available in Pydantic v2.7+.
from pydantic import BaseModel, ConfigDict, Field
class Model(BaseModel):
model_config = ConfigDict(use_attribute_docstrings=True)
x: str
"""
Example of an attribute docstring
"""
y: int = Field(description="Description in Field")
"""
Description in Field overrides attribute docstring
"""
print(Model.model_fields["x"].description)
# > Example of an attribute docstring
print(Model.model_fields["y"].description)
# > Description in Field
Usage with TypedDict
Due to current limitations, attribute docstrings detection may not work as expected when using TypedDict
(in particular when multiple TypedDict
classes have the same name in the same source file). The behavior
can be different depending on the Python version used.
cache_strings
instance-attribute
¶
cache_strings: bool | Literal['all', 'keys', 'none']
Whether to cache strings to avoid constructing new Python objects. Defaults to True.
Enabling this setting should significantly improve validation performance while increasing memory usage slightly.
True
or'all'
(the default): cache all strings'keys'
: cache only dictionary keysFalse
or'none'
: no caching
Note
True
or 'all'
is required to cache strings during general validation because
validators don't know if they're in a key or a value.
Tip
If repeated strings are rare, it's recommended to use 'keys'
or 'none'
to reduce memory usage,
as the performance difference is minimal if repeated strings are rare.
with_config ¶
with_config(
config: ConfigDict,
) -> Callable[[_TypeT], _TypeT]
Usage Documentation
Configuration with dataclass
from the standard library or TypedDict
A convenience decorator to set a Pydantic configuration on a TypedDict
or a dataclass
from the standard library.
Although the configuration can be set using the __pydantic_config__
attribute, it does not play well with type checkers,
especially with TypedDict
.
Usage
from typing_extensions import TypedDict
from pydantic import ConfigDict, TypeAdapter, with_config
@with_config(ConfigDict(str_to_lower=True))
class Model(TypedDict):
x: str
ta = TypeAdapter(Model)
print(ta.validate_python({'x': 'ABC'}))
#> {'x': 'abc'}
Source code in pydantic/config.py
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
|
pydantic.alias_generators ¶
Alias generators for converting between different capitalization conventions.
to_pascal ¶
Convert a snake_case string to PascalCase.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
snake |
str
|
The string to convert. |
required |
Returns:
Type | Description |
---|---|
str
|
The PascalCase string. |
Source code in pydantic/alias_generators.py
12 13 14 15 16 17 18 19 20 21 22 |
|
to_camel ¶
Convert a snake_case string to camelCase.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
snake |
str
|
The string to convert. |
required |
Returns:
Type | Description |
---|---|
str
|
The converted camelCase string. |
Source code in pydantic/alias_generators.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
to_snake ¶
Convert a PascalCase, camelCase, or kebab-case string to snake_case.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
camel |
str
|
The string to convert. |
required |
Returns:
Type | Description |
---|---|
str
|
The converted string in snake_case. |
Source code in pydantic/alias_generators.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|