Dataclasses
API Documentation
If you don't want to use Pydantic's BaseModel
you can instead get the same data validation
on standard dataclasses.
from datetime import datetime
from typing import Optional
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
signup_ts: Optional[datetime] = None
user = User(id='42', signup_ts='2032-06-21T12:00')
print(user)
"""
User(id=42, name='John Doe', signup_ts=datetime.datetime(2032, 6, 21, 12, 0))
"""
from datetime import datetime
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
signup_ts: datetime | None = None
user = User(id='42', signup_ts='2032-06-21T12:00')
print(user)
"""
User(id=42, name='John Doe', signup_ts=datetime.datetime(2032, 6, 21, 12, 0))
"""
Note
Keep in mind that Pydantic dataclasses are not a replacement for Pydantic models. They provide a similar functionality to stdlib dataclasses with the addition of Pydantic validation.
There are cases where subclassing using Pydantic models is the better choice.
For more information and discussion see pydantic/pydantic#710.
Similarities between Pydantic dataclasses and models include support for:
- Configuration support
- Nested classes
- Generics
Some differences between Pydantic dataclasses and models include:
- validators
- The behavior with the
extra
configuration value
Similarly to Pydantic models, arguments used to instantiate the dataclass are copied.
To make use of the various methods to validate, dump and generate a JSON Schema,
you can wrap the dataclass with a TypeAdapter
and make use of its methods.
You can use both the Pydantic's Field()
and the stdlib's field()
functions:
import dataclasses
from typing import Optional
from pydantic import Field, TypeAdapter
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
friends: list[int] = dataclasses.field(default_factory=lambda: [0])
age: Optional[int] = dataclasses.field(
default=None,
metadata={'title': 'The age of the user', 'description': 'do not lie!'},
)
height: Optional[int] = Field(None, title='The height in cm', ge=50, le=300)
user = User(id='42')
print(TypeAdapter(User).json_schema())
"""
{
'properties': {
'id': {'title': 'Id', 'type': 'integer'},
'name': {'default': 'John Doe', 'title': 'Name', 'type': 'string'},
'friends': {
'items': {'type': 'integer'},
'title': 'Friends',
'type': 'array',
},
'age': {
'anyOf': [{'type': 'integer'}, {'type': 'null'}],
'default': None,
'description': 'do not lie!',
'title': 'The age of the user',
},
'height': {
'anyOf': [
{'maximum': 300, 'minimum': 50, 'type': 'integer'},
{'type': 'null'},
],
'default': None,
'title': 'The height in cm',
},
},
'required': ['id'],
'title': 'User',
'type': 'object',
}
"""
import dataclasses
from pydantic import Field, TypeAdapter
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
friends: list[int] = dataclasses.field(default_factory=lambda: [0])
age: int | None = dataclasses.field(
default=None,
metadata={'title': 'The age of the user', 'description': 'do not lie!'},
)
height: int | None = Field(None, title='The height in cm', ge=50, le=300)
user = User(id='42')
print(TypeAdapter(User).json_schema())
"""
{
'properties': {
'id': {'title': 'Id', 'type': 'integer'},
'name': {'default': 'John Doe', 'title': 'Name', 'type': 'string'},
'friends': {
'items': {'type': 'integer'},
'title': 'Friends',
'type': 'array',
},
'age': {
'anyOf': [{'type': 'integer'}, {'type': 'null'}],
'default': None,
'description': 'do not lie!',
'title': 'The age of the user',
},
'height': {
'anyOf': [
{'maximum': 300, 'minimum': 50, 'type': 'integer'},
{'type': 'null'},
],
'default': None,
'title': 'The height in cm',
},
},
'required': ['id'],
'title': 'User',
'type': 'object',
}
"""
The Pydantic @dataclass
decorator accepts the same arguments as the standard decorator, with the addition
of a config
parameter.
Dataclass config¶
If you want to modify the configuration like you would with a BaseModel
, you have two options:
- Use the
config
argument of the decorator. - Define the configuration with the
__pydantic_config__
attribute.
from pydantic import ConfigDict
from pydantic.dataclasses import dataclass
# Option 1 -- using the decorator argument:
@dataclass(config=ConfigDict(validate_assignment=True)) # (1)!
class MyDataclass1:
a: int
# Option 2 -- using an attribute:
@dataclass
class MyDataclass2:
a: int
__pydantic_config__ = ConfigDict(validate_assignment=True)
- You can read more about
validate_assignment
in the API reference.
Note
While Pydantic dataclasses support the extra
configuration value, some default
behavior of stdlib dataclasses may prevail. For example, any extra fields present on a Pydantic dataclass with
extra
set to 'allow'
are omitted in the dataclass' string representation.
There is also no way to provide validation using the __pydantic_extra__
attribute.
Rebuilding dataclass schema¶
The rebuild_dataclass()
can be used to rebuild the core schema of the dataclass.
See the rebuilding model schema section for more details.
Stdlib dataclasses and Pydantic dataclasses¶
Inherit from stdlib dataclasses¶
Stdlib dataclasses (nested or not) can also be inherited and Pydantic will automatically validate all the inherited fields.
import dataclasses
import pydantic
@dataclasses.dataclass
class Z:
z: int
@dataclasses.dataclass
class Y(Z):
y: int = 0
@pydantic.dataclasses.dataclass
class X(Y):
x: int = 0
foo = X(x=b'1', y='2', z='3')
print(foo)
#> X(z=3, y=2, x=1)
try:
X(z='pika')
except pydantic.ValidationError as e:
print(e)
"""
1 validation error for X
z
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='pika', input_type=str]
"""
Usage of stdlib dataclasses with BaseModel
¶
When a standard library dataclass is used within a Pydantic model, a Pydantic dataclass or a TypeAdapter
,
validation will be applied (and the configuration stays the same). This means that using a stdlib or a Pydantic
dataclass as a field annotation is functionally equivalent.
import dataclasses
from typing import Optional
from pydantic import BaseModel, ConfigDict, ValidationError
@dataclasses.dataclass(frozen=True)
class User:
name: str
class Foo(BaseModel):
# Required so that pydantic revalidates the model attributes:
model_config = ConfigDict(revalidate_instances='always')
user: Optional[User] = None
# nothing is validated as expected:
user = User(name=['not', 'a', 'string'])
print(user)
#> User(name=['not', 'a', 'string'])
try:
Foo(user=user)
except ValidationError as e:
print(e)
"""
1 validation error for Foo
user.name
Input should be a valid string [type=string_type, input_value=['not', 'a', 'string'], input_type=list]
"""
foo = Foo(user=User(name='pika'))
try:
foo.user.name = 'bulbi'
except dataclasses.FrozenInstanceError as e:
print(e)
#> cannot assign to field 'name'
import dataclasses
from pydantic import BaseModel, ConfigDict, ValidationError
@dataclasses.dataclass(frozen=True)
class User:
name: str
class Foo(BaseModel):
# Required so that pydantic revalidates the model attributes:
model_config = ConfigDict(revalidate_instances='always')
user: User | None = None
# nothing is validated as expected:
user = User(name=['not', 'a', 'string'])
print(user)
#> User(name=['not', 'a', 'string'])
try:
Foo(user=user)
except ValidationError as e:
print(e)
"""
1 validation error for Foo
user.name
Input should be a valid string [type=string_type, input_value=['not', 'a', 'string'], input_type=list]
"""
foo = Foo(user=User(name='pika'))
try:
foo.user.name = 'bulbi'
except dataclasses.FrozenInstanceError as e:
print(e)
#> cannot assign to field 'name'
Using custom types¶
As said above, validation is applied on standard library dataclasses. If you make use
of custom types, you will get an error when trying to refer to the dataclass. To circumvent
the issue, you can set the arbitrary_types_allowed
configuration value on the dataclass:
import dataclasses
from pydantic import BaseModel, ConfigDict
from pydantic.errors import PydanticSchemaGenerationError
class ArbitraryType:
def __init__(self, value):
self.value = value
def __repr__(self):
return f'ArbitraryType(value={self.value!r})'
@dataclasses.dataclass
class DC:
a: ArbitraryType
b: str
# valid as it is a stdlib dataclass without validation:
my_dc = DC(a=ArbitraryType(value=3), b='qwe')
try:
class Model(BaseModel):
dc: DC
other: str
# invalid as dc is now validated with pydantic, and ArbitraryType is not a known type
Model(dc=my_dc, other='other')
except PydanticSchemaGenerationError as e:
print(e.message)
"""
Unable to generate pydantic-core schema for <class '__main__.ArbitraryType'>. Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it.
If you got this error by calling handler(<some type>) within `__get_pydantic_core_schema__` then you likely need to call `handler.generate_schema(<some type>)` since we do not call `__get_pydantic_core_schema__` on `<some type>` otherwise to avoid infinite recursion.
"""
# valid as we set arbitrary_types_allowed=True, and that config pushes down to the nested vanilla dataclass
class Model(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
dc: DC
other: str
m = Model(dc=my_dc, other='other')
print(repr(m))
#> Model(dc=DC(a=ArbitraryType(value=3), b='qwe'), other='other')
Checking if a dataclass is a Pydantic dataclass¶
Pydantic dataclasses are still considered dataclasses, so using dataclasses.is_dataclass
will return True
. To check
if a type is specifically a pydantic dataclass you can use the is_pydantic_dataclass
function.
import dataclasses
import pydantic
@dataclasses.dataclass
class StdLibDataclass:
id: int
PydanticDataclass = pydantic.dataclasses.dataclass(StdLibDataclass)
print(dataclasses.is_dataclass(StdLibDataclass))
#> True
print(pydantic.dataclasses.is_pydantic_dataclass(StdLibDataclass))
#> False
print(dataclasses.is_dataclass(PydanticDataclass))
#> True
print(pydantic.dataclasses.is_pydantic_dataclass(PydanticDataclass))
#> True
Validators and initialization hooks¶
Validators also work with Pydantic dataclasses:
from pydantic import field_validator
from pydantic.dataclasses import dataclass
@dataclass
class DemoDataclass:
product_id: str # should be a five-digit string, may have leading zeros
@field_validator('product_id', mode='before')
@classmethod
def convert_int_serial(cls, v):
if isinstance(v, int):
v = str(v).zfill(5)
return v
print(DemoDataclass(product_id='01234'))
#> DemoDataclass(product_id='01234')
print(DemoDataclass(product_id=2468))
#> DemoDataclass(product_id='02468')
The dataclass __post_init__()
method is also supported, and will
be called between the calls to before and after model validators.
Example
from pydantic_core import ArgsKwargs
from typing_extensions import Self
from pydantic import model_validator
from pydantic.dataclasses import dataclass
@dataclass
class Birth:
year: int
month: int
day: int
@dataclass
class User:
birth: Birth
@model_validator(mode='before')
@classmethod
def before(cls, values: ArgsKwargs) -> ArgsKwargs:
print(f'First: {values}') # (1)!
"""
First: ArgsKwargs((), {'birth': {'year': 1995, 'month': 3, 'day': 2}})
"""
return values
@model_validator(mode='after')
def after(self) -> Self:
print(f'Third: {self}')
#> Third: User(birth=Birth(year=1995, month=3, day=2))
return self
def __post_init__(self):
print(f'Second: {self.birth}')
#> Second: Birth(year=1995, month=3, day=2)
user = User(**{'birth': {'year': 1995, 'month': 3, 'day': 2}})
- Unlike Pydantic models, the
values
parameter is of typeArgsKwargs