Configuration
Behaviour of Pydantic can be controlled via the BaseModel.model_config
,
and as an argument to TypeAdapter
.
Note
Before v2.0, the Config
class was used. This is still supported, but deprecated.
from pydantic import BaseModel, ConfigDict, ValidationError
class Model(BaseModel):
model_config = ConfigDict(str_max_length=10)
v: str
try:
m = Model(v='x' * 20)
except ValidationError as e:
print(e)
"""
1 validation error for Model
v
String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
"""
Also, you can specify config options as model class kwargs:
from pydantic import BaseModel, ValidationError
class Model(BaseModel, extra='forbid'): # (1)!
a: str
try:
Model(a='spam', b='oh no')
except ValidationError as e:
print(e)
"""
1 validation error for Model
b
Extra inputs are not permitted [type=extra_forbidden, input_value='oh no', input_type=str]
"""
- See the Extra data section for more details.
Similarly, if using the @dataclass
decorator from Pydantic:
from datetime import datetime
from pydantic import ConfigDict, ValidationError
from pydantic.dataclasses import dataclass
config = ConfigDict(str_max_length=10, validate_assignment=True)
@dataclass(config=config)
class User:
id: int
name: str = 'John Doe'
signup_ts: datetime = None
user = User(id='42', signup_ts='2032-06-21T12:00')
try:
user.name = 'x' * 20
except ValidationError as e:
print(e)
"""
1 validation error for User
name
String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
"""
Configuration with dataclass
from the standard library or TypedDict
¶
If using the dataclass
from the standard library or TypedDict
, you should use __pydantic_config__
instead.
from dataclasses import dataclass
from datetime import datetime
from pydantic import ConfigDict
@dataclass
class User:
__pydantic_config__ = ConfigDict(strict=True)
id: int
name: str = 'John Doe'
signup_ts: datetime = None
Alternatively, the with_config
decorator can be used to comply with type checkers.
from typing_extensions import TypedDict
from pydantic import ConfigDict, with_config
@with_config(ConfigDict(str_to_lower=True))
class Model(TypedDict):
x: str
Change behaviour globally¶
If you wish to change the behaviour of Pydantic globally, you can create your own custom BaseModel
with custom model_config
since the config is inherited:
from pydantic import BaseModel, ConfigDict
class Parent(BaseModel):
model_config = ConfigDict(extra='allow')
class Model(Parent):
x: str
m = Model(x='foo', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
If you add a model_config
to the Model
class, it will merge with the model_config
from Parent
:
from pydantic import BaseModel, ConfigDict
class Parent(BaseModel):
model_config = ConfigDict(extra='allow')
class Model(Parent):
model_config = ConfigDict(str_to_lower=True)
x: str
m = Model(x='FOO', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
print(m.model_config)
#> {'extra': 'allow', 'str_to_lower': True}