TypeAdapter
Bases: Generic[T]
Usage Documentation
Type adapters provide a flexible way to perform validation and serialization based on a Python type.
A TypeAdapter
instance exposes some of the functionality from BaseModel
instance methods
for types that do not have such methods (such as dataclasses, primitive types, and more).
Note: TypeAdapter
instances are not types, and cannot be used as type annotations for fields.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
type
|
Any
|
The type associated with the |
required |
config
|
ConfigDict | None
|
Configuration for the Note You cannot provide a configuration when instantiating a |
None
|
_parent_depth
|
int
|
Depth at which to search for the parent frame. This frame is used when
resolving forward annotations during schema building, by looking for the globals and locals of this
frame. Defaults to 2, which will result in the frame where the Note This parameter is named with an underscore to suggest its private nature and discourage use.
It may be deprecated in a minor version, so we only recommend using it if you're comfortable
with potential change in behavior/support. It's default value is 2 because internally,
the |
2
|
module
|
str | None
|
The module that passes to plugin if provided. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
core_schema |
CoreSchema
|
The core schema for the type. |
validator |
SchemaValidator | PluggableSchemaValidator
|
The schema validator for the type. |
serializer |
SchemaSerializer
|
The schema serializer for the type. |
pydantic_complete |
bool
|
Whether the core schema for the type is successfully built. |
Compatibility with mypy
Depending on the type used, mypy
might raise an error when instantiating a TypeAdapter
. As a workaround, you can explicitly
annotate your variable:
from typing import Union
from pydantic import TypeAdapter
ta: TypeAdapter[Union[str, int]] = TypeAdapter(Union[str, int]) # type: ignore[arg-type]
Namespace management nuances and implementation details
Here, we collect some notes on namespace management, and subtle differences from BaseModel
:
BaseModel
uses its own __module__
to find out where it was defined
and then looks for symbols to resolve forward references in those globals.
On the other hand, TypeAdapter
can be initialized with arbitrary objects,
which may not be types and thus do not have a __module__
available.
So instead we look at the globals in our parent stack frame.
It is expected that the ns_resolver
passed to this function will have the correct
namespace for the type we're adapting. See the source code for TypeAdapter.__init__
and TypeAdapter.rebuild
for various ways to construct this namespace.
This works for the case where this function is called in a module that has the target of forward references in its scope, but does not always work for more complex cases.
For example, take the following:
IntList = list[int]
OuterDict = dict[str, 'IntList']
from a import OuterDict
from pydantic import TypeAdapter
IntList = int # replaces the symbol the forward reference is looking for
v = TypeAdapter(OuterDict)
v({'x': 1}) # should fail but doesn't
If OuterDict
were a BaseModel
, this would work because it would resolve
the forward reference within the a.py
namespace.
But TypeAdapter(OuterDict)
can't determine what module OuterDict
came from.
In other words, the assumption that all forward references exist in the
module we are being called from is not technically always true.
Although most of the time it is and it works fine for recursive models and such,
BaseModel
's behavior isn't perfect either and can break in similar ways,
so there is no right or wrong between the two.
But at the very least this behavior is subtly different from BaseModel
's.
Source code in pydantic/type_adapter.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
rebuild ¶
rebuild(
*,
force: bool = False,
raise_errors: bool = True,
_parent_namespace_depth: int = 2,
_types_namespace: MappingNamespace | None = None
) -> bool | None
Try to rebuild the pydantic-core schema for the adapter's type.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
force
|
bool
|
Whether to force the rebuilding of the type adapter's schema, defaults to |
False
|
raise_errors
|
bool
|
Whether to raise errors, defaults to |
True
|
_parent_namespace_depth
|
int
|
Depth at which to search for the parent frame. This frame is used when resolving forward annotations during schema rebuilding, by looking for the locals of this frame. Defaults to 2, which will result in the frame where the method was called. |
2
|
_types_namespace
|
MappingNamespace | None
|
An explicit types namespace to use, instead of using the local namespace
from the parent frame. Defaults to |
None
|
Returns:
Type | Description |
---|---|
bool | None
|
Returns |
bool | None
|
If rebuilding was required, returns |
Source code in pydantic/type_adapter.py
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
validate_python ¶
validate_python(
object: Any,
/,
*,
strict: bool | None = None,
from_attributes: bool | None = None,
context: dict[str, Any] | None = None,
experimental_allow_partial: (
bool | Literal["off", "on", "trailing-strings"]
) = False,
) -> T
Validate a Python object against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
object
|
Any
|
The Python object to validate against the model. |
required |
strict
|
bool | None
|
Whether to strictly check types. |
None
|
from_attributes
|
bool | None
|
Whether to extract data from object attributes. |
None
|
context
|
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
experimental_allow_partial
|
bool | Literal['off', 'on', 'trailing-strings']
|
Experimental whether to enable partial validation, e.g. to process streams. * False / 'off': Default behavior, no partial validation. * True / 'on': Enable partial validation. * 'trailing-strings': Enable partial validation and allow trailing strings in the input. |
False
|
Note
When using TypeAdapter
with a Pydantic dataclass
, the use of the from_attributes
argument is not supported.
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
validate_json ¶
validate_json(
data: str | bytes | bytearray,
/,
*,
strict: bool | None = None,
context: dict[str, Any] | None = None,
experimental_allow_partial: (
bool | Literal["off", "on", "trailing-strings"]
) = False,
) -> T
Usage Documentation
Validate a JSON string or bytes against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
str | bytes | bytearray
|
The JSON data to validate against the model. |
required |
strict
|
bool | None
|
Whether to strictly check types. |
None
|
context
|
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
experimental_allow_partial
|
bool | Literal['off', 'on', 'trailing-strings']
|
Experimental whether to enable partial validation, e.g. to process streams. * False / 'off': Default behavior, no partial validation. * True / 'on': Enable partial validation. * 'trailing-strings': Enable partial validation and allow trailing strings in the input. |
False
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
validate_strings ¶
validate_strings(
obj: Any,
/,
*,
strict: bool | None = None,
context: dict[str, Any] | None = None,
experimental_allow_partial: (
bool | Literal["off", "on", "trailing-strings"]
) = False,
) -> T
Validate object contains string data against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj
|
Any
|
The object contains string data to validate. |
required |
strict
|
bool | None
|
Whether to strictly check types. |
None
|
context
|
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
experimental_allow_partial
|
bool | Literal['off', 'on', 'trailing-strings']
|
Experimental whether to enable partial validation, e.g. to process streams. * False / 'off': Default behavior, no partial validation. * True / 'on': Enable partial validation. * 'trailing-strings': Enable partial validation and allow trailing strings in the input. |
False
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
|
get_default_value ¶
get_default_value(
*,
strict: bool | None = None,
context: dict[str, Any] | None = None
) -> Some[T] | None
Get the default value for the wrapped type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict
|
bool | None
|
Whether to strictly check types. |
None
|
context
|
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
Some[T] | None
|
The default value wrapped in a |
Source code in pydantic/type_adapter.py
478 479 480 481 482 483 484 485 486 487 488 |
|
dump_python ¶
dump_python(
instance: T,
/,
*,
mode: Literal["json", "python"] = "python",
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: (
bool | Literal["none", "warn", "error"]
) = True,
serialize_as_any: bool = False,
context: dict[str, Any] | None = None,
) -> Any
Dump an instance of the adapted type to a Python object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance
|
T
|
The Python object to serialize. |
required |
mode
|
Literal['json', 'python']
|
The output format. |
'python'
|
include
|
IncEx | None
|
Fields to include in the output. |
None
|
exclude
|
IncEx | None
|
Fields to exclude from the output. |
None
|
by_alias
|
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset
|
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults
|
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none
|
bool
|
Whether to exclude fields with None values. |
False
|
round_trip
|
bool
|
Whether to output the serialized data in a way that is compatible with deserialization. |
False
|
warnings
|
bool | Literal['none', 'warn', 'error']
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a |
True
|
serialize_as_any
|
bool
|
Whether to serialize fields with duck-typing serialization behavior. |
False
|
context
|
dict[str, Any] | None
|
Additional context to pass to the serializer. |
None
|
Returns:
Type | Description |
---|---|
Any
|
The serialized object. |
Source code in pydantic/type_adapter.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
dump_json ¶
dump_json(
instance: T,
/,
*,
indent: int | None = None,
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: (
bool | Literal["none", "warn", "error"]
) = True,
serialize_as_any: bool = False,
context: dict[str, Any] | None = None,
) -> bytes
Usage Documentation
Serialize an instance of the adapted type to JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance
|
T
|
The instance to be serialized. |
required |
indent
|
int | None
|
Number of spaces for JSON indentation. |
None
|
include
|
IncEx | None
|
Fields to include. |
None
|
exclude
|
IncEx | None
|
Fields to exclude. |
None
|
by_alias
|
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset
|
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults
|
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none
|
bool
|
Whether to exclude fields with a value of |
False
|
round_trip
|
bool
|
Whether to serialize and deserialize the instance to ensure round-tripping. |
False
|
warnings
|
bool | Literal['none', 'warn', 'error']
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a |
True
|
serialize_as_any
|
bool
|
Whether to serialize fields with duck-typing serialization behavior. |
False
|
context
|
dict[str, Any] | None
|
Additional context to pass to the serializer. |
None
|
Returns:
Type | Description |
---|---|
bytes
|
The JSON representation of the given instance as bytes. |
Source code in pydantic/type_adapter.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
|
json_schema ¶
json_schema(
*,
by_alias: bool = True,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[
GenerateJsonSchema
] = GenerateJsonSchema,
mode: JsonSchemaMode = "validation"
) -> dict[str, Any]
Generate a JSON schema for the adapted type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by_alias
|
bool
|
Whether to use alias names for field names. |
True
|
ref_template
|
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator
|
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
mode
|
JsonSchemaMode
|
The mode to use for schema generation. |
'validation'
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The JSON schema for the model as a dictionary. |
Source code in pydantic/type_adapter.py
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
|
json_schemas
staticmethod
¶
json_schemas(
inputs: Iterable[
tuple[
JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]
]
],
/,
*,
by_alias: bool = True,
title: str | None = None,
description: str | None = None,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[
GenerateJsonSchema
] = GenerateJsonSchema,
) -> tuple[
dict[
tuple[JsonSchemaKeyT, JsonSchemaMode],
JsonSchemaValue,
],
JsonSchemaValue,
]
Generate a JSON schema including definitions from multiple type adapters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Iterable[tuple[JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]]]
|
Inputs to schema generation. The first two items will form the keys of the (first) output mapping; the type adapters will provide the core schemas that get converted into definitions in the output JSON schema. |
required |
by_alias
|
bool
|
Whether to use alias names. |
True
|
title
|
str | None
|
The title for the schema. |
None
|
description
|
str | None
|
The description for the schema. |
None
|
ref_template
|
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator
|
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
Returns:
Type | Description |
---|---|
tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]
|
A tuple where:
|
Source code in pydantic/type_adapter.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|