Skip to content

JSON Schema

Usage Documentation

JSON Schema

The json_schema module contains classes and functions to allow the way JSON Schema is generated to be customized.

In general you shouldn't need to use this module directly; instead, you can use BaseModel.model_json_schema and TypeAdapter.json_schema.

CoreSchemaOrFieldType module-attribute

CoreSchemaOrFieldType = Literal[
    CoreSchemaType, CoreSchemaFieldType
]

A type alias for defined schema types that represents a union of core_schema.CoreSchemaType and core_schema.CoreSchemaFieldType.

JsonSchemaValue module-attribute

JsonSchemaValue = Dict[str, Any]

A type alias for a JSON schema value. This is a dictionary of string keys to arbitrary JSON values.

JsonSchemaMode module-attribute

JsonSchemaMode = Literal['validation', 'serialization']

A type alias that represents the mode of a JSON schema; either 'validation' or 'serialization'.

For some types, the inputs to validation differ from the outputs of serialization. For example, computed fields will only be present when serializing, and should not be provided when validating. This flag provides a way to indicate whether you want the JSON schema required for validation inputs, or that will be matched by serialization outputs.

JsonSchemaWarningKind module-attribute

JsonSchemaWarningKind = Literal[
    "skipped-choice",
    "non-serializable-default",
    "skipped-discriminator",
]

A type alias representing the kinds of warnings that can be emitted during JSON schema generation.

See GenerateJsonSchema.render_warning_message for more details.

DEFAULT_REF_TEMPLATE module-attribute

DEFAULT_REF_TEMPLATE = '#/$defs/{model}'

The default format string used to generate reference names.

PydanticJsonSchemaWarning

Bases: UserWarning

This class is used to emit warnings produced during JSON schema generation. See the GenerateJsonSchema.emit_warning and GenerateJsonSchema.render_warning_message methods for more details; these can be overridden to control warning behavior.

GenerateJsonSchema

GenerateJsonSchema(
    by_alias: bool = True,
    ref_template: str = DEFAULT_REF_TEMPLATE,
)

A class for generating JSON schemas.

This class generates JSON schemas based on configured parameters. The default schema dialect is https://json-schema.org/draft/2020-12/schema. The class uses by_alias to configure how fields with multiple names are handled and ref_template to format reference names.

Attributes:

Name Type Description
schema_dialect

The JSON schema dialect used to generate the schema. See Declaring a Dialect in the JSON Schema documentation for more information about dialects.

ignored_warning_kinds set[JsonSchemaWarningKind]

Warnings to ignore when generating the schema. self.render_warning_message will do nothing if its argument kind is in ignored_warning_kinds; this value can be modified on subclasses to easily control which warnings are emitted.

by_alias

Whether to use field aliases when generating the schema.

ref_template

The format string used when generating reference names.

core_to_json_refs dict[CoreModeRef, JsonRef]

A mapping of core refs to JSON refs.

core_to_defs_refs dict[CoreModeRef, DefsRef]

A mapping of core refs to definition refs.

defs_to_core_refs dict[DefsRef, CoreModeRef]

A mapping of definition refs to core refs.

json_to_defs_refs dict[JsonRef, DefsRef]

A mapping of JSON refs to definition refs.

definitions dict[DefsRef, JsonSchemaValue]

Definitions in the schema.

Parameters:

Name Type Description Default
by_alias bool

Whether to use field aliases in the generated schemas.

True
ref_template str

The format string to use when generating reference names.

DEFAULT_REF_TEMPLATE

Raises:

Type Description
JsonSchemaError

If the instance of the class is inadvertently reused after generating a schema.

Source code in pydantic/json_schema.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def __init__(self, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE):
    self.by_alias = by_alias
    self.ref_template = ref_template

    self.core_to_json_refs: dict[CoreModeRef, JsonRef] = {}
    self.core_to_defs_refs: dict[CoreModeRef, DefsRef] = {}
    self.defs_to_core_refs: dict[DefsRef, CoreModeRef] = {}
    self.json_to_defs_refs: dict[JsonRef, DefsRef] = {}

    self.definitions: dict[DefsRef, JsonSchemaValue] = {}
    self._config_wrapper_stack = _config.ConfigWrapperStack(_config.ConfigWrapper({}))

    self._mode: JsonSchemaMode = 'validation'

    # The following includes a mapping of a fully-unique defs ref choice to a list of preferred
    # alternatives, which are generally simpler, such as only including the class name.
    # At the end of schema generation, we use these to produce a JSON schema with more human-readable
    # definitions, which would also work better in a generated OpenAPI client, etc.
    self._prioritized_defsref_choices: dict[DefsRef, list[DefsRef]] = {}
    self._collision_counter: dict[str, int] = defaultdict(int)
    self._collision_index: dict[str, int] = {}

    self._schema_type_to_method = self.build_schema_type_to_method()

    # When we encounter definitions we need to try to build them immediately
    # so that they are available schemas that reference them
    # But it's possible that CoreSchema was never going to be used
    # (e.g. because the CoreSchema that references short circuits is JSON schema generation without needing
    #  the reference) so instead of failing altogether if we can't build a definition we
    # store the error raised and re-throw it if we end up needing that def
    self._core_defs_invalid_for_json_schema: dict[DefsRef, PydanticInvalidForJsonSchema] = {}

    # This changes to True after generating a schema, to prevent issues caused by accidental reuse
    # of a single instance of a schema generator
    self._used = False

ValidationsMapping

This class just contains mappings from core_schema attribute names to the corresponding JSON schema attribute names. While I suspect it is unlikely to be necessary, you can in principle override this class in a subclass of GenerateJsonSchema (by inheriting from GenerateJsonSchema.ValidationsMapping) to change these mappings.

build_schema_type_to_method

build_schema_type_to_method() -> dict[
    CoreSchemaOrFieldType,
    Callable[[CoreSchemaOrField], JsonSchemaValue],
]

Builds a dictionary mapping fields to methods for generating JSON schemas.

Returns:

Type Description
dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]]

A dictionary containing the mapping of CoreSchemaOrFieldType to a handler method.

Raises:

Type Description
TypeError

If no method has been defined for generating a JSON schema for a given pydantic core schema type.

Source code in pydantic/json_schema.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def build_schema_type_to_method(
    self,
) -> dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]]:
    """Builds a dictionary mapping fields to methods for generating JSON schemas.

    Returns:
        A dictionary containing the mapping of `CoreSchemaOrFieldType` to a handler method.

    Raises:
        TypeError: If no method has been defined for generating a JSON schema for a given pydantic core schema type.
    """
    mapping: dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]] = {}
    core_schema_types: list[CoreSchemaOrFieldType] = _typing_extra.literal_values(
        CoreSchemaOrFieldType  # type: ignore
    )
    for key in core_schema_types:
        method_name = f"{key.replace('-', '_')}_schema"
        try:
            mapping[key] = getattr(self, method_name)
        except AttributeError as e:  # pragma: no cover
            if os.environ['PYDANTIC_PRIVATE_ALLOW_UNHANDLED_SCHEMA_TYPES'] == '1':
                continue
            raise TypeError(
                f'No method for generating JsonSchema for core_schema.type={key!r} '
                f'(expected: {type(self).__name__}.{method_name})'
            ) from e
    return mapping

generate_definitions

generate_definitions(
    inputs: Sequence[
        tuple[JsonSchemaKeyT, JsonSchemaMode, CoreSchema]
    ]
) -> tuple[
    dict[
        tuple[JsonSchemaKeyT, JsonSchemaMode],
        JsonSchemaValue,
    ],
    dict[DefsRef, JsonSchemaValue],
]

Generates JSON schema definitions from a list of core schemas, pairing the generated definitions with a mapping that links the input keys to the definition references.

Parameters:

Name Type Description Default
inputs Sequence[tuple[JsonSchemaKeyT, JsonSchemaMode, CoreSchema]]

A sequence of tuples, where:

  • The first element is a JSON schema key type.
  • The second element is the JSON mode: either 'validation' or 'serialization'.
  • The third element is a core schema.
required

Returns:

Type Description
tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], dict[DefsRef, JsonSchemaValue]]

A tuple where:

  • The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have JsonRef references to definitions that are defined in the second returned element.)
  • The second element is a dictionary whose keys are definition references for the JSON schemas from the first returned element, and whose values are the actual JSON schema definitions.

Raises:

Type Description
PydanticUserError

Raised if the JSON schema generator has already been used to generate a JSON schema.

Source code in pydantic/json_schema.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def generate_definitions(
    self, inputs: Sequence[tuple[JsonSchemaKeyT, JsonSchemaMode, core_schema.CoreSchema]]
) -> tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], dict[DefsRef, JsonSchemaValue]]:
    """Generates JSON schema definitions from a list of core schemas, pairing the generated definitions with a
    mapping that links the input keys to the definition references.

    Args:
        inputs: A sequence of tuples, where:

            - The first element is a JSON schema key type.
            - The second element is the JSON mode: either 'validation' or 'serialization'.
            - The third element is a core schema.

    Returns:
        A tuple where:

            - The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
                whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
                JsonRef references to definitions that are defined in the second returned element.)
            - The second element is a dictionary whose keys are definition references for the JSON schemas
                from the first returned element, and whose values are the actual JSON schema definitions.

    Raises:
        PydanticUserError: Raised if the JSON schema generator has already been used to generate a JSON schema.
    """
    if self._used:
        raise PydanticUserError(
            'This JSON schema generator has already been used to generate a JSON schema. '
            f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
            code='json-schema-already-used',
        )

    for _, mode, schema in inputs:
        self._mode = mode
        self.generate_inner(schema)

    definitions_remapping = self._build_definitions_remapping()

    json_schemas_map: dict[tuple[JsonSchemaKeyT, JsonSchemaMode], DefsRef] = {}
    for key, mode, schema in inputs:
        self._mode = mode
        json_schema = self.generate_inner(schema)
        json_schemas_map[(key, mode)] = definitions_remapping.remap_json_schema(json_schema)

    json_schema = {'$defs': self.definitions}
    json_schema = definitions_remapping.remap_json_schema(json_schema)
    self._used = True
    return json_schemas_map, self.sort(json_schema['$defs'])  # type: ignore

generate

generate(
    schema: CoreSchema, mode: JsonSchemaMode = "validation"
) -> JsonSchemaValue

Generates a JSON schema for a specified schema in a specified mode.

Parameters:

Name Type Description Default
schema CoreSchema

A Pydantic model.

required
mode JsonSchemaMode

The mode in which to generate the schema. Defaults to 'validation'.

'validation'

Returns:

Type Description
JsonSchemaValue

A JSON schema representing the specified schema.

Raises:

Type Description
PydanticUserError

If the JSON schema generator has already been used to generate a JSON schema.

Source code in pydantic/json_schema.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def generate(self, schema: CoreSchema, mode: JsonSchemaMode = 'validation') -> JsonSchemaValue:
    """Generates a JSON schema for a specified schema in a specified mode.

    Args:
        schema: A Pydantic model.
        mode: The mode in which to generate the schema. Defaults to 'validation'.

    Returns:
        A JSON schema representing the specified schema.

    Raises:
        PydanticUserError: If the JSON schema generator has already been used to generate a JSON schema.
    """
    self._mode = mode
    if self._used:
        raise PydanticUserError(
            'This JSON schema generator has already been used to generate a JSON schema. '
            f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
            code='json-schema-already-used',
        )

    json_schema: JsonSchemaValue = self.generate_inner(schema)
    json_ref_counts = self.get_json_ref_counts(json_schema)

    ref = cast(JsonRef, json_schema.get('$ref'))
    while ref is not None:  # may need to unpack multiple levels
        ref_json_schema = self.get_schema_from_definitions(ref)
        if json_ref_counts[ref] == 1 and ref_json_schema is not None and len(json_schema) == 1:
            # "Unpack" the ref since this is the only reference and there are no sibling keys
            json_schema = ref_json_schema.copy()  # copy to prevent recursive dict reference
            json_ref_counts[ref] -= 1
            ref = cast(JsonRef, json_schema.get('$ref'))
        ref = None

    self._garbage_collect_definitions(json_schema)
    definitions_remapping = self._build_definitions_remapping()

    if self.definitions:
        json_schema['$defs'] = self.definitions

    json_schema = definitions_remapping.remap_json_schema(json_schema)

    # For now, we will not set the $schema key. However, if desired, this can be easily added by overriding
    # this method and adding the following line after a call to super().generate(schema):
    # json_schema['$schema'] = self.schema_dialect

    self._used = True
    return self.sort(json_schema)

generate_inner

generate_inner(
    schema: CoreSchemaOrField,
) -> JsonSchemaValue

Generates a JSON schema for a given core schema.

Parameters:

Name Type Description Default
schema CoreSchemaOrField

The given core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

TODO: the nested function definitions here seem like bad practice, I'd like to unpack these in a future PR. It'd be great if we could shorten the call stack a bit for JSON schema generation, and I think there's potential for that here.

Source code in pydantic/json_schema.py
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def generate_inner(self, schema: CoreSchemaOrField) -> JsonSchemaValue:  # noqa: C901
    """Generates a JSON schema for a given core schema.

    Args:
        schema: The given core schema.

    Returns:
        The generated JSON schema.

    TODO: the nested function definitions here seem like bad practice, I'd like to unpack these
    in a future PR. It'd be great if we could shorten the call stack a bit for JSON schema generation,
    and I think there's potential for that here.
    """
    # If a schema with the same CoreRef has been handled, just return a reference to it
    # Note that this assumes that it will _never_ be the case that the same CoreRef is used
    # on types that should have different JSON schemas
    if 'ref' in schema:
        core_ref = CoreRef(schema['ref'])  # type: ignore[typeddict-item]
        core_mode_ref = (core_ref, self.mode)
        if core_mode_ref in self.core_to_defs_refs and self.core_to_defs_refs[core_mode_ref] in self.definitions:
            return {'$ref': self.core_to_json_refs[core_mode_ref]}

    def populate_defs(core_schema: CoreSchema, json_schema: JsonSchemaValue) -> JsonSchemaValue:
        if 'ref' in core_schema:
            core_ref = CoreRef(core_schema['ref'])  # type: ignore[typeddict-item]
            defs_ref, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
            json_ref = JsonRef(ref_json_schema['$ref'])
            # Replace the schema if it's not a reference to itself
            # What we want to avoid is having the def be just a ref to itself
            # which is what would happen if we blindly assigned any
            if json_schema.get('$ref', None) != json_ref:
                self.definitions[defs_ref] = json_schema
                self._core_defs_invalid_for_json_schema.pop(defs_ref, None)
            json_schema = ref_json_schema
        return json_schema

    def handler_func(schema_or_field: CoreSchemaOrField) -> JsonSchemaValue:
        """Generate a JSON schema based on the input schema.

        Args:
            schema_or_field: The core schema to generate a JSON schema from.

        Returns:
            The generated JSON schema.

        Raises:
            TypeError: If an unexpected schema type is encountered.
        """
        # Generate the core-schema-type-specific bits of the schema generation:
        json_schema: JsonSchemaValue | None = None
        if self.mode == 'serialization' and 'serialization' in schema_or_field:
            # In this case, we skip the JSON Schema generation of the schema
            # and use the `'serialization'` schema instead (canonical example:
            # `Annotated[int, PlainSerializer(str)]`).
            ser_schema = schema_or_field['serialization']  # type: ignore
            json_schema = self.ser_schema(ser_schema)

            # It might be that the 'serialization'` is skipped depending on `when_used`.
            # This is only relevant for `nullable` schemas though, so we special case here.
            if (
                json_schema is not None
                and ser_schema.get('when_used') in ('unless-none', 'json-unless-none')
                and schema_or_field['type'] == 'nullable'
            ):
                json_schema = self.get_flattened_anyof([{'type': 'null'}, json_schema])
        if json_schema is None:
            if _core_utils.is_core_schema(schema_or_field) or _core_utils.is_core_schema_field(schema_or_field):
                generate_for_schema_type = self._schema_type_to_method[schema_or_field['type']]
                json_schema = generate_for_schema_type(schema_or_field)
            else:
                raise TypeError(f'Unexpected schema type: schema={schema_or_field}')
        if _core_utils.is_core_schema(schema_or_field):
            json_schema = populate_defs(schema_or_field, json_schema)
        return json_schema

    current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, handler_func)

    metadata = cast(_core_metadata.CoreMetadata, schema.get('metadata', {}))

    # TODO: I dislike that we have to wrap these basic dict updates in callables, is there any way around this?

    if js_updates := metadata.get('pydantic_js_updates'):

        def js_updates_handler_func(
            schema_or_field: CoreSchemaOrField,
            current_handler: GetJsonSchemaHandler = current_handler,
        ) -> JsonSchemaValue:
            json_schema = {**current_handler(schema_or_field), **js_updates}
            return json_schema

        current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, js_updates_handler_func)

    if js_extra := metadata.get('pydantic_js_extra'):

        def js_extra_handler_func(
            schema_or_field: CoreSchemaOrField,
            current_handler: GetJsonSchemaHandler = current_handler,
        ) -> JsonSchemaValue:
            json_schema = current_handler(schema_or_field)
            if isinstance(js_extra, dict):
                json_schema.update(to_jsonable_python(js_extra))
            elif callable(js_extra):
                # similar to typing issue in _update_class_schema when we're working with callable js extra
                js_extra(json_schema)  # type: ignore
            return json_schema

        current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, js_extra_handler_func)

    for js_modify_function in metadata.get('pydantic_js_functions', ()):

        def new_handler_func(
            schema_or_field: CoreSchemaOrField,
            current_handler: GetJsonSchemaHandler = current_handler,
            js_modify_function: GetJsonSchemaFunction = js_modify_function,
        ) -> JsonSchemaValue:
            json_schema = js_modify_function(schema_or_field, current_handler)
            if _core_utils.is_core_schema(schema_or_field):
                json_schema = populate_defs(schema_or_field, json_schema)
            original_schema = current_handler.resolve_ref_schema(json_schema)
            ref = json_schema.pop('$ref', None)
            if ref and json_schema:
                original_schema.update(json_schema)
            return original_schema

        current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)

    for js_modify_function in metadata.get('pydantic_js_annotation_functions', ()):

        def new_handler_func(
            schema_or_field: CoreSchemaOrField,
            current_handler: GetJsonSchemaHandler = current_handler,
            js_modify_function: GetJsonSchemaFunction = js_modify_function,
        ) -> JsonSchemaValue:
            json_schema = js_modify_function(schema_or_field, current_handler)
            if _core_utils.is_core_schema(schema_or_field):
                json_schema = populate_defs(schema_or_field, json_schema)
            return json_schema

        current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)

    json_schema = current_handler(schema)
    if _core_utils.is_core_schema(schema):
        json_schema = populate_defs(schema, json_schema)
    return json_schema

sort

sort(
    value: JsonSchemaValue, parent_key: str | None = None
) -> JsonSchemaValue

Override this method to customize the sorting of the JSON schema (e.g., don't sort at all, sort all keys unconditionally, etc.)

By default, alphabetically sort the keys in the JSON schema, skipping the 'properties' and 'default' keys to preserve field definition order. This sort is recursive, so it will sort all nested dictionaries as well.

Source code in pydantic/json_schema.py
571
572
573
574
575
576
577
578
579
580
581
582
583
def sort(self, value: JsonSchemaValue, parent_key: str | None = None) -> JsonSchemaValue:
    """Override this method to customize the sorting of the JSON schema (e.g., don't sort at all, sort all keys unconditionally, etc.)

    By default, alphabetically sort the keys in the JSON schema, skipping the 'properties' and 'default' keys to preserve field definition order.
    This sort is recursive, so it will sort all nested dictionaries as well.
    """
    sorted_dict: dict[str, JsonSchemaValue] = {}
    keys = value.keys()
    if parent_key not in ('properties', 'default'):
        keys = sorted(keys)
    for key in keys:
        sorted_dict[key] = self._sort_recursive(value[key], parent_key=key)
    return sorted_dict

invalid_schema

invalid_schema(schema: InvalidSchema) -> JsonSchemaValue

Placeholder - should never be called.

Source code in pydantic/json_schema.py
605
606
607
608
def invalid_schema(self, schema: core_schema.InvalidSchema) -> JsonSchemaValue:
    """Placeholder - should never be called."""

    raise RuntimeError('Cannot generate schema for invalid_schema. This is a bug! Please report it.')

any_schema

any_schema(schema: AnySchema) -> JsonSchemaValue

Generates a JSON schema that matches any value.

Parameters:

Name Type Description Default
schema AnySchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
610
611
612
613
614
615
616
617
618
619
def any_schema(self, schema: core_schema.AnySchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches any value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {}

none_schema

none_schema(schema: NoneSchema) -> JsonSchemaValue

Generates a JSON schema that matches None.

Parameters:

Name Type Description Default
schema NoneSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
621
622
623
624
625
626
627
628
629
630
def none_schema(self, schema: core_schema.NoneSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches `None`.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'null'}

bool_schema

bool_schema(schema: BoolSchema) -> JsonSchemaValue

Generates a JSON schema that matches a bool value.

Parameters:

Name Type Description Default
schema BoolSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
632
633
634
635
636
637
638
639
640
641
def bool_schema(self, schema: core_schema.BoolSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a bool value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'boolean'}

int_schema

int_schema(schema: IntSchema) -> JsonSchemaValue

Generates a JSON schema that matches an int value.

Parameters:

Name Type Description Default
schema IntSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
643
644
645
646
647
648
649
650
651
652
653
654
655
def int_schema(self, schema: core_schema.IntSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches an int value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema: dict[str, Any] = {'type': 'integer'}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
    json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
    return json_schema

float_schema

float_schema(schema: FloatSchema) -> JsonSchemaValue

Generates a JSON schema that matches a float value.

Parameters:

Name Type Description Default
schema FloatSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
657
658
659
660
661
662
663
664
665
666
667
668
669
def float_schema(self, schema: core_schema.FloatSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a float value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema: dict[str, Any] = {'type': 'number'}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
    json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
    return json_schema

decimal_schema

decimal_schema(schema: DecimalSchema) -> JsonSchemaValue

Generates a JSON schema that matches a decimal value.

Parameters:

Name Type Description Default
schema DecimalSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
def decimal_schema(self, schema: core_schema.DecimalSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a decimal value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema = self.str_schema(core_schema.str_schema())
    if self.mode == 'validation':
        multiple_of = schema.get('multiple_of')
        le = schema.get('le')
        ge = schema.get('ge')
        lt = schema.get('lt')
        gt = schema.get('gt')
        json_schema = {
            'anyOf': [
                self.float_schema(
                    core_schema.float_schema(
                        allow_inf_nan=schema.get('allow_inf_nan'),
                        multiple_of=None if multiple_of is None else float(multiple_of),
                        le=None if le is None else float(le),
                        ge=None if ge is None else float(ge),
                        lt=None if lt is None else float(lt),
                        gt=None if gt is None else float(gt),
                    )
                ),
                json_schema,
            ],
        }
    return json_schema

str_schema

str_schema(schema: StringSchema) -> JsonSchemaValue

Generates a JSON schema that matches a string value.

Parameters:

Name Type Description Default
schema StringSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
def str_schema(self, schema: core_schema.StringSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a string value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema = {'type': 'string'}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
    if isinstance(json_schema.get('pattern'), Pattern):
        # TODO: should we add regex flags to the pattern?
        json_schema['pattern'] = json_schema.get('pattern').pattern  # type: ignore
    return json_schema

bytes_schema

bytes_schema(schema: BytesSchema) -> JsonSchemaValue

Generates a JSON schema that matches a bytes value.

Parameters:

Name Type Description Default
schema BytesSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
720
721
722
723
724
725
726
727
728
729
730
731
def bytes_schema(self, schema: core_schema.BytesSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a bytes value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema = {'type': 'string', 'format': 'base64url' if self._config.ser_json_bytes == 'base64' else 'binary'}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.bytes)
    return json_schema

date_schema

date_schema(schema: DateSchema) -> JsonSchemaValue

Generates a JSON schema that matches a date value.

Parameters:

Name Type Description Default
schema DateSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
733
734
735
736
737
738
739
740
741
742
def date_schema(self, schema: core_schema.DateSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a date value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'string', 'format': 'date'}

time_schema

time_schema(schema: TimeSchema) -> JsonSchemaValue

Generates a JSON schema that matches a time value.

Parameters:

Name Type Description Default
schema TimeSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
744
745
746
747
748
749
750
751
752
753
def time_schema(self, schema: core_schema.TimeSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a time value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'string', 'format': 'time'}

datetime_schema

datetime_schema(schema: DatetimeSchema) -> JsonSchemaValue

Generates a JSON schema that matches a datetime value.

Parameters:

Name Type Description Default
schema DatetimeSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
755
756
757
758
759
760
761
762
763
764
def datetime_schema(self, schema: core_schema.DatetimeSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a datetime value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'string', 'format': 'date-time'}

timedelta_schema

timedelta_schema(
    schema: TimedeltaSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a timedelta value.

Parameters:

Name Type Description Default
schema TimedeltaSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
766
767
768
769
770
771
772
773
774
775
776
777
def timedelta_schema(self, schema: core_schema.TimedeltaSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a timedelta value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    if self._config.ser_json_timedelta == 'float':
        return {'type': 'number'}
    return {'type': 'string', 'format': 'duration'}

literal_schema

literal_schema(schema: LiteralSchema) -> JsonSchemaValue

Generates a JSON schema that matches a literal value.

Parameters:

Name Type Description Default
schema LiteralSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
def literal_schema(self, schema: core_schema.LiteralSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a literal value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    expected = [v.value if isinstance(v, Enum) else v for v in schema['expected']]
    # jsonify the expected values
    expected = [to_jsonable_python(v) for v in expected]

    result: dict[str, Any] = {}
    if len(expected) == 1:
        result['const'] = expected[0]
    else:
        result['enum'] = expected

    types = {type(e) for e in expected}
    if types == {str}:
        result['type'] = 'string'
    elif types == {int}:
        result['type'] = 'integer'
    elif types == {float}:
        result['type'] = 'number'
    elif types == {bool}:
        result['type'] = 'boolean'
    elif types == {list}:
        result['type'] = 'array'
    elif types == {type(None)}:
        result['type'] = 'null'
    return result

enum_schema

enum_schema(schema: EnumSchema) -> JsonSchemaValue

Generates a JSON schema that matches an Enum value.

Parameters:

Name Type Description Default
schema EnumSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
def enum_schema(self, schema: core_schema.EnumSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches an Enum value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    enum_type = schema['cls']
    description = None if not enum_type.__doc__ else inspect.cleandoc(enum_type.__doc__)
    if (
        description == 'An enumeration.'
    ):  # This is the default value provided by enum.EnumMeta.__new__; don't use it
        description = None
    result: dict[str, Any] = {'title': enum_type.__name__, 'description': description}
    result = {k: v for k, v in result.items() if v is not None}

    expected = [to_jsonable_python(v.value) for v in schema['members']]

    result['enum'] = expected

    types = {type(e) for e in expected}
    if isinstance(enum_type, str) or types == {str}:
        result['type'] = 'string'
    elif isinstance(enum_type, int) or types == {int}:
        result['type'] = 'integer'
    elif isinstance(enum_type, float) or types == {float}:
        result['type'] = 'number'
    elif types == {bool}:
        result['type'] = 'boolean'
    elif types == {list}:
        result['type'] = 'array'

    return result

is_instance_schema

is_instance_schema(
    schema: IsInstanceSchema,
) -> JsonSchemaValue

Handles JSON schema generation for a core schema that checks if a value is an instance of a class.

Unless overridden in a subclass, this raises an error.

Parameters:

Name Type Description Default
schema IsInstanceSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
849
850
851
852
853
854
855
856
857
858
859
860
def is_instance_schema(self, schema: core_schema.IsInstanceSchema) -> JsonSchemaValue:
    """Handles JSON schema generation for a core schema that checks if a value is an instance of a class.

    Unless overridden in a subclass, this raises an error.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.handle_invalid_for_json_schema(schema, f'core_schema.IsInstanceSchema ({schema["cls"]})')

is_subclass_schema

is_subclass_schema(
    schema: IsSubclassSchema,
) -> JsonSchemaValue

Handles JSON schema generation for a core schema that checks if a value is a subclass of a class.

For backwards compatibility with v1, this does not raise an error, but can be overridden to change this.

Parameters:

Name Type Description Default
schema IsSubclassSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
862
863
864
865
866
867
868
869
870
871
872
873
874
def is_subclass_schema(self, schema: core_schema.IsSubclassSchema) -> JsonSchemaValue:
    """Handles JSON schema generation for a core schema that checks if a value is a subclass of a class.

    For backwards compatibility with v1, this does not raise an error, but can be overridden to change this.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    # Note: This is for compatibility with V1; you can override if you want different behavior.
    return {}

callable_schema

callable_schema(schema: CallableSchema) -> JsonSchemaValue

Generates a JSON schema that matches a callable value.

Unless overridden in a subclass, this raises an error.

Parameters:

Name Type Description Default
schema CallableSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
876
877
878
879
880
881
882
883
884
885
886
887
def callable_schema(self, schema: core_schema.CallableSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a callable value.

    Unless overridden in a subclass, this raises an error.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.handle_invalid_for_json_schema(schema, 'core_schema.CallableSchema')

list_schema

list_schema(schema: ListSchema) -> JsonSchemaValue

Returns a schema that matches a list schema.

Parameters:

Name Type Description Default
schema ListSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
889
890
891
892
893
894
895
896
897
898
899
900
901
def list_schema(self, schema: core_schema.ListSchema) -> JsonSchemaValue:
    """Returns a schema that matches a list schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
    json_schema = {'type': 'array', 'items': items_schema}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
    return json_schema

tuple_positional_schema

tuple_positional_schema(
    schema: TupleSchema,
) -> JsonSchemaValue

Replaced by tuple_schema.

Source code in pydantic/json_schema.py
903
904
905
906
907
908
909
910
911
912
@deprecated('`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.', category=None)
@final
def tuple_positional_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
    """Replaced by `tuple_schema`."""
    warnings.warn(
        '`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.',
        PydanticDeprecatedSince26,
        stacklevel=2,
    )
    return self.tuple_schema(schema)

tuple_variable_schema

tuple_variable_schema(
    schema: TupleSchema,
) -> JsonSchemaValue

Replaced by tuple_schema.

Source code in pydantic/json_schema.py
914
915
916
917
918
919
920
921
922
923
@deprecated('`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.', category=None)
@final
def tuple_variable_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
    """Replaced by `tuple_schema`."""
    warnings.warn(
        '`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.',
        PydanticDeprecatedSince26,
        stacklevel=2,
    )
    return self.tuple_schema(schema)

tuple_schema

tuple_schema(schema: TupleSchema) -> JsonSchemaValue

Generates a JSON schema that matches a tuple schema e.g. Tuple[int, str, bool] or Tuple[int, ...].

Parameters:

Name Type Description Default
schema TupleSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
def tuple_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a tuple schema e.g. `Tuple[int,
    str, bool]` or `Tuple[int, ...]`.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema: JsonSchemaValue = {'type': 'array'}
    if 'variadic_item_index' in schema:
        variadic_item_index = schema['variadic_item_index']
        if variadic_item_index > 0:
            json_schema['minItems'] = variadic_item_index
            json_schema['prefixItems'] = [
                self.generate_inner(item) for item in schema['items_schema'][:variadic_item_index]
            ]
        if variadic_item_index + 1 == len(schema['items_schema']):
            # if the variadic item is the last item, then represent it faithfully
            json_schema['items'] = self.generate_inner(schema['items_schema'][variadic_item_index])
        else:
            # otherwise, 'items' represents the schema for the variadic
            # item plus the suffix, so just allow anything for simplicity
            # for now
            json_schema['items'] = True
    else:
        prefixItems = [self.generate_inner(item) for item in schema['items_schema']]
        if prefixItems:
            json_schema['prefixItems'] = prefixItems
        json_schema['minItems'] = len(prefixItems)
        json_schema['maxItems'] = len(prefixItems)
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
    return json_schema

set_schema

set_schema(schema: SetSchema) -> JsonSchemaValue

Generates a JSON schema that matches a set schema.

Parameters:

Name Type Description Default
schema SetSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
960
961
962
963
964
965
966
967
968
969
def set_schema(self, schema: core_schema.SetSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a set schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self._common_set_schema(schema)

frozenset_schema

frozenset_schema(
    schema: FrozenSetSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a frozenset schema.

Parameters:

Name Type Description Default
schema FrozenSetSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
971
972
973
974
975
976
977
978
979
980
def frozenset_schema(self, schema: core_schema.FrozenSetSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a frozenset schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self._common_set_schema(schema)

generator_schema

generator_schema(
    schema: GeneratorSchema,
) -> JsonSchemaValue

Returns a JSON schema that represents the provided GeneratorSchema.

Parameters:

Name Type Description Default
schema GeneratorSchema

The schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
def generator_schema(self, schema: core_schema.GeneratorSchema) -> JsonSchemaValue:
    """Returns a JSON schema that represents the provided GeneratorSchema.

    Args:
        schema: The schema.

    Returns:
        The generated JSON schema.
    """
    items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
    json_schema = {'type': 'array', 'items': items_schema}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
    return json_schema

dict_schema

dict_schema(schema: DictSchema) -> JsonSchemaValue

Generates a JSON schema that matches a dict schema.

Parameters:

Name Type Description Default
schema DictSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
def dict_schema(self, schema: core_schema.DictSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a dict schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema: JsonSchemaValue = {'type': 'object'}

    keys_schema = self.generate_inner(schema['keys_schema']).copy() if 'keys_schema' in schema else {}
    if '$ref' not in keys_schema:
        keys_pattern = keys_schema.pop('pattern', None)
        # Don't give a title to patternProperties/propertyNames:
        keys_schema.pop('title', None)
    else:
        # Here, we assume that if the keys schema is a definition reference,
        # it can't be a simple string core schema (and thus no pattern can exist).
        # However, this is only in practice (in theory, a definition reference core
        # schema could be generated for a simple string schema).
        # Note that we avoid calling `self.resolve_ref_schema`, as it might not exist yet.
        keys_pattern = None

    values_schema = self.generate_inner(schema['values_schema']).copy() if 'values_schema' in schema else {}
    # don't give a title to additionalProperties:
    values_schema.pop('title', None)

    if values_schema or keys_pattern is not None:  # don't add additionalProperties if it's empty
        if keys_pattern is None:
            json_schema['additionalProperties'] = values_schema
        else:
            json_schema['patternProperties'] = {keys_pattern: values_schema}

    if (
        # The len check indicates that constraints are probably present:
        (keys_schema.get('type') == 'string' and len(keys_schema) > 1)
        # If this is a definition reference schema, it most likely has constraints:
        or '$ref' in keys_schema
    ):
        keys_schema.pop('type', None)
        json_schema['propertyNames'] = keys_schema

    self.update_with_validations(json_schema, schema, self.ValidationsMapping.object)
    return json_schema

function_before_schema

function_before_schema(
    schema: BeforeValidatorFunctionSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a function-before schema.

Parameters:

Name Type Description Default
schema BeforeValidatorFunctionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
def function_before_schema(self, schema: core_schema.BeforeValidatorFunctionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a function-before schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    if self._mode == 'validation' and (input_schema := schema.get('json_schema_input_schema')):
        return self.generate_inner(input_schema)

    return self.generate_inner(schema['schema'])

function_after_schema

function_after_schema(
    schema: AfterValidatorFunctionSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a function-after schema.

Parameters:

Name Type Description Default
schema AfterValidatorFunctionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
def function_after_schema(self, schema: core_schema.AfterValidatorFunctionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a function-after schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['schema'])

function_plain_schema

function_plain_schema(
    schema: PlainValidatorFunctionSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a function-plain schema.

Parameters:

Name Type Description Default
schema PlainValidatorFunctionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
def function_plain_schema(self, schema: core_schema.PlainValidatorFunctionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a function-plain schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    if self._mode == 'validation' and (input_schema := schema.get('json_schema_input_schema')):
        return self.generate_inner(input_schema)

    return self.handle_invalid_for_json_schema(
        schema, f'core_schema.PlainValidatorFunctionSchema ({schema["function"]})'
    )

function_wrap_schema

function_wrap_schema(
    schema: WrapValidatorFunctionSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a function-wrap schema.

Parameters:

Name Type Description Default
schema WrapValidatorFunctionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
def function_wrap_schema(self, schema: core_schema.WrapValidatorFunctionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a function-wrap schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    if self._mode == 'validation' and (input_schema := schema.get('json_schema_input_schema')):
        return self.generate_inner(input_schema)

    return self.generate_inner(schema['schema'])

default_schema

default_schema(
    schema: WithDefaultSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema with a default value.

Parameters:

Name Type Description Default
schema WithDefaultSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
def default_schema(self, schema: core_schema.WithDefaultSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema with a default value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema = self.generate_inner(schema['schema'])

    if 'default' not in schema:
        return json_schema
    default = schema['default']
    # Note: if you want to include the value returned by the default_factory,
    # override this method and replace the code above with:
    # if 'default' in schema:
    #     default = schema['default']
    # elif 'default_factory' in schema:
    #     default = schema['default_factory']()
    # else:
    #     return json_schema

    # we reflect the application of custom plain, no-info serializers to defaults for
    # JSON Schemas viewed in serialization mode:
    # TODO: improvements along with https://github.com/pydantic/pydantic/issues/8208
    if (
        self.mode == 'serialization'
        and (ser_schema := schema['schema'].get('serialization'))
        and (ser_func := ser_schema.get('function'))
        and ser_schema.get('type') == 'function-plain'
        and not ser_schema.get('info_arg')
        and not (default is None and ser_schema.get('when_used') in ('unless-none', 'json-unless-none'))
    ):
        try:
            default = ser_func(default)  # type: ignore
        except Exception:
            # It might be that the provided default needs to be validated (read: parsed) first
            # (assuming `validate_default` is enabled). However, we can't perform
            # such validation during JSON Schema generation so we don't support
            # this pattern for now.
            # (One example is when using `foo: ByteSize = '1MB'`, which validates and
            # serializes as an int. In this case, `ser_func` is `int` and `int('1MB')` fails).
            self.emit_warning(
                'non-serializable-default',
                f'Unable to serialize value {default!r} with the plain serializer; excluding default from JSON schema',
            )
            return json_schema

    try:
        encoded_default = self.encode_default(default)
    except pydantic_core.PydanticSerializationError:
        self.emit_warning(
            'non-serializable-default',
            f'Default value {default} is not JSON serializable; excluding default from JSON schema',
        )
        # Return the inner schema, as though there was no default
        return json_schema

    json_schema['default'] = encoded_default
    return json_schema

nullable_schema

nullable_schema(schema: NullableSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that allows null values.

Parameters:

Name Type Description Default
schema NullableSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
def nullable_schema(self, schema: core_schema.NullableSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that allows null values.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    null_schema = {'type': 'null'}
    inner_json_schema = self.generate_inner(schema['schema'])

    if inner_json_schema == null_schema:
        return null_schema
    else:
        # Thanks to the equality check against `null_schema` above, I think 'oneOf' would also be valid here;
        # I'll use 'anyOf' for now, but it could be changed it if it would work better with some external tooling
        return self.get_flattened_anyof([inner_json_schema, null_schema])

union_schema

union_schema(schema: UnionSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that allows values matching any of the given schemas.

Parameters:

Name Type Description Default
schema UnionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def union_schema(self, schema: core_schema.UnionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that allows values matching any of the given schemas.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    generated: list[JsonSchemaValue] = []

    choices = schema['choices']
    for choice in choices:
        # choice will be a tuple if an explicit label was provided
        choice_schema = choice[0] if isinstance(choice, tuple) else choice
        try:
            generated.append(self.generate_inner(choice_schema))
        except PydanticOmit:
            continue
        except PydanticInvalidForJsonSchema as exc:
            self.emit_warning('skipped-choice', exc.message)
    if len(generated) == 1:
        return generated[0]
    return self.get_flattened_anyof(generated)

tagged_union_schema

tagged_union_schema(
    schema: TaggedUnionSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that allows values matching any of the given schemas, where the schemas are tagged with a discriminator field that indicates which schema should be used to validate the value.

Parameters:

Name Type Description Default
schema TaggedUnionSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
def tagged_union_schema(self, schema: core_schema.TaggedUnionSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that allows values matching any of the given schemas, where
    the schemas are tagged with a discriminator field that indicates which schema should be used to validate
    the value.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    generated: dict[str, JsonSchemaValue] = {}
    for k, v in schema['choices'].items():
        if isinstance(k, Enum):
            k = k.value
        try:
            # Use str(k) since keys must be strings for json; while not technically correct,
            # it's the closest that can be represented in valid JSON
            generated[str(k)] = self.generate_inner(v).copy()
        except PydanticOmit:
            continue
        except PydanticInvalidForJsonSchema as exc:
            self.emit_warning('skipped-choice', exc.message)

    one_of_choices = _deduplicate_schemas(generated.values())
    json_schema: JsonSchemaValue = {'oneOf': one_of_choices}

    # This reflects the v1 behavior; TODO: we should make it possible to exclude OpenAPI stuff from the JSON schema
    openapi_discriminator = self._extract_discriminator(schema, one_of_choices)
    if openapi_discriminator is not None:
        json_schema['discriminator'] = {
            'propertyName': openapi_discriminator,
            'mapping': {k: v.get('$ref', v) for k, v in generated.items()},
        }

    return json_schema

chain_schema

chain_schema(schema: ChainSchema) -> JsonSchemaValue

Generates a JSON schema that matches a core_schema.ChainSchema.

When generating a schema for validation, we return the validation JSON schema for the first step in the chain. For serialization, we return the serialization JSON schema for the last step in the chain.

Parameters:

Name Type Description Default
schema ChainSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
def chain_schema(self, schema: core_schema.ChainSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a core_schema.ChainSchema.

    When generating a schema for validation, we return the validation JSON schema for the first step in the chain.
    For serialization, we return the serialization JSON schema for the last step in the chain.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    step_index = 0 if self.mode == 'validation' else -1  # use first step for validation, last for serialization
    return self.generate_inner(schema['steps'][step_index])

lax_or_strict_schema

lax_or_strict_schema(
    schema: LaxOrStrictSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that allows values matching either the lax schema or the strict schema.

Parameters:

Name Type Description Default
schema LaxOrStrictSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
def lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that allows values matching either the lax schema or the
    strict schema.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    # TODO: Need to read the default value off of model config or whatever
    use_strict = schema.get('strict', False)  # TODO: replace this default False
    # If your JSON schema fails to generate it is probably
    # because one of the following two branches failed.
    if use_strict:
        return self.generate_inner(schema['strict_schema'])
    else:
        return self.generate_inner(schema['lax_schema'])

json_or_python_schema

json_or_python_schema(
    schema: JsonOrPythonSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that allows values matching either the JSON schema or the Python schema.

The JSON schema is used instead of the Python schema. If you want to use the Python schema, you should override this method.

Parameters:

Name Type Description Default
schema JsonOrPythonSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
def json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that allows values matching either the JSON schema or the
    Python schema.

    The JSON schema is used instead of the Python schema. If you want to use the Python schema, you should override
    this method.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['json_schema'])

typed_dict_schema

typed_dict_schema(
    schema: TypedDictSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a typed dict.

Parameters:

Name Type Description Default
schema TypedDictSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
def typed_dict_schema(self, schema: core_schema.TypedDictSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a typed dict.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    total = schema.get('total', True)
    named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
        (name, self.field_is_required(field, total), field)
        for name, field in schema['fields'].items()
        if self.field_is_present(field)
    ]
    if self.mode == 'serialization':
        named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
    cls = schema.get('cls')
    config = _get_typed_dict_config(cls)
    with self._config_wrapper_stack.push(config):
        json_schema = self._named_required_fields_schema(named_required_fields)

    if cls is not None:
        self._update_class_schema(json_schema, cls, config)
    else:
        extra = config.get('extra')
        if extra == 'forbid':
            json_schema['additionalProperties'] = False
        elif extra == 'allow':
            json_schema['additionalProperties'] = True

    return json_schema

typed_dict_field_schema

typed_dict_field_schema(
    schema: TypedDictField,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a typed dict field.

Parameters:

Name Type Description Default
schema TypedDictField

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
def typed_dict_field_schema(self, schema: core_schema.TypedDictField) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a typed dict field.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['schema'])

dataclass_field_schema

dataclass_field_schema(
    schema: DataclassField,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a dataclass field.

Parameters:

Name Type Description Default
schema DataclassField

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
def dataclass_field_schema(self, schema: core_schema.DataclassField) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a dataclass field.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['schema'])

model_field_schema

model_field_schema(schema: ModelField) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a model field.

Parameters:

Name Type Description Default
schema ModelField

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
def model_field_schema(self, schema: core_schema.ModelField) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a model field.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['schema'])

computed_field_schema

computed_field_schema(
    schema: ComputedField,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a computed field.

Parameters:

Name Type Description Default
schema ComputedField

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
def computed_field_schema(self, schema: core_schema.ComputedField) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a computed field.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['return_schema'])

model_schema

model_schema(schema: ModelSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a model.

Parameters:

Name Type Description Default
schema ModelSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
def model_schema(self, schema: core_schema.ModelSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a model.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    # We do not use schema['model'].model_json_schema() here
    # because it could lead to inconsistent refs handling, etc.
    cls = cast('type[BaseModel]', schema['cls'])
    config = cls.model_config

    with self._config_wrapper_stack.push(config):
        json_schema = self.generate_inner(schema['schema'])

    self._update_class_schema(json_schema, cls, config)

    return json_schema

resolve_ref_schema

resolve_ref_schema(
    json_schema: JsonSchemaValue,
) -> JsonSchemaValue

Resolve a JsonSchemaValue to the non-ref schema if it is a $ref schema.

Parameters:

Name Type Description Default
json_schema JsonSchemaValue

The schema to resolve.

required

Returns:

Type Description
JsonSchemaValue

The resolved schema.

Raises:

Type Description
RuntimeError

If the schema reference can't be found in definitions.

Source code in pydantic/json_schema.py
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
def resolve_ref_schema(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
    """Resolve a JsonSchemaValue to the non-ref schema if it is a $ref schema.

    Args:
        json_schema: The schema to resolve.

    Returns:
        The resolved schema.

    Raises:
        RuntimeError: If the schema reference can't be found in definitions.
    """
    if '$ref' not in json_schema:
        return json_schema

    ref = json_schema['$ref']
    schema_to_update = self.get_schema_from_definitions(JsonRef(ref))
    if schema_to_update is None:
        raise RuntimeError(f'Cannot update undefined schema for $ref={ref}')
    return self.resolve_ref_schema(schema_to_update)

model_fields_schema

model_fields_schema(
    schema: ModelFieldsSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a model's fields.

Parameters:

Name Type Description Default
schema ModelFieldsSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
def model_fields_schema(self, schema: core_schema.ModelFieldsSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a model's fields.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
        (name, self.field_is_required(field, total=True), field)
        for name, field in schema['fields'].items()
        if self.field_is_present(field)
    ]
    if self.mode == 'serialization':
        named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
    json_schema = self._named_required_fields_schema(named_required_fields)
    extras_schema = schema.get('extras_schema', None)
    if extras_schema is not None:
        schema_to_update = self.resolve_ref_schema(json_schema)
        schema_to_update['additionalProperties'] = self.generate_inner(extras_schema)
    return json_schema

field_is_present

field_is_present(field: CoreSchemaField) -> bool

Whether the field should be included in the generated JSON schema.

Parameters:

Name Type Description Default
field CoreSchemaField

The schema for the field itself.

required

Returns:

Type Description
bool

True if the field should be included in the generated JSON schema, False otherwise.

Source code in pydantic/json_schema.py
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
def field_is_present(self, field: CoreSchemaField) -> bool:
    """Whether the field should be included in the generated JSON schema.

    Args:
        field: The schema for the field itself.

    Returns:
        `True` if the field should be included in the generated JSON schema, `False` otherwise.
    """
    if self.mode == 'serialization':
        # If you still want to include the field in the generated JSON schema,
        # override this method and return True
        return not field.get('serialization_exclude')
    elif self.mode == 'validation':
        return True
    else:
        assert_never(self.mode)

field_is_required

field_is_required(
    field: ModelField | DataclassField | TypedDictField,
    total: bool,
) -> bool

Whether the field should be marked as required in the generated JSON schema. (Note that this is irrelevant if the field is not present in the JSON schema.).

Parameters:

Name Type Description Default
field ModelField | DataclassField | TypedDictField

The schema for the field itself.

required
total bool

Only applies to TypedDictFields. Indicates if the TypedDict this field belongs to is total, in which case any fields that don't explicitly specify required=False are required.

required

Returns:

Type Description
bool

True if the field should be marked as required in the generated JSON schema, False otherwise.

Source code in pydantic/json_schema.py
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def field_is_required(
    self,
    field: core_schema.ModelField | core_schema.DataclassField | core_schema.TypedDictField,
    total: bool,
) -> bool:
    """Whether the field should be marked as required in the generated JSON schema.
    (Note that this is irrelevant if the field is not present in the JSON schema.).

    Args:
        field: The schema for the field itself.
        total: Only applies to `TypedDictField`s.
            Indicates if the `TypedDict` this field belongs to is total, in which case any fields that don't
            explicitly specify `required=False` are required.

    Returns:
        `True` if the field should be marked as required in the generated JSON schema, `False` otherwise.
    """
    if self.mode == 'serialization' and self._config.json_schema_serialization_defaults_required:
        return not field.get('serialization_exclude')
    else:
        if field['type'] == 'typed-dict-field':
            return field.get('required', total)
        else:
            return field['schema']['type'] != 'default'

dataclass_args_schema

dataclass_args_schema(
    schema: DataclassArgsSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a dataclass's constructor arguments.

Parameters:

Name Type Description Default
schema DataclassArgsSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
def dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a dataclass's constructor arguments.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
        (field['name'], self.field_is_required(field, total=True), field)
        for field in schema['fields']
        if self.field_is_present(field)
    ]
    if self.mode == 'serialization':
        named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
    return self._named_required_fields_schema(named_required_fields)

dataclass_schema

dataclass_schema(
    schema: DataclassSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a dataclass.

Parameters:

Name Type Description Default
schema DataclassSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
def dataclass_schema(self, schema: core_schema.DataclassSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a dataclass.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    from ._internal._dataclasses import is_builtin_dataclass

    cls = schema['cls']
    config: ConfigDict = getattr(cls, '__pydantic_config__', cast('ConfigDict', {}))

    with self._config_wrapper_stack.push(config):
        json_schema = self.generate_inner(schema['schema']).copy()

    self._update_class_schema(json_schema, cls, config)

    # Dataclass-specific handling of description
    if is_builtin_dataclass(cls):
        # vanilla dataclass; don't use cls.__doc__ as it will contain the class signature by default
        description = None
    else:
        description = None if cls.__doc__ is None else inspect.cleandoc(cls.__doc__)
    if description:
        json_schema['description'] = description

    return json_schema

arguments_schema

arguments_schema(
    schema: ArgumentsSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a function's arguments.

Parameters:

Name Type Description Default
schema ArgumentsSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
def arguments_schema(self, schema: core_schema.ArgumentsSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a function's arguments.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    prefer_positional = schema.get('metadata', {}).get('pydantic_js_prefer_positional_arguments')

    arguments = schema['arguments_schema']
    kw_only_arguments = [a for a in arguments if a.get('mode') == 'keyword_only']
    kw_or_p_arguments = [a for a in arguments if a.get('mode') in {'positional_or_keyword', None}]
    p_only_arguments = [a for a in arguments if a.get('mode') == 'positional_only']
    var_args_schema = schema.get('var_args_schema')
    var_kwargs_schema = schema.get('var_kwargs_schema')

    if prefer_positional:
        positional_possible = not kw_only_arguments and not var_kwargs_schema
        if positional_possible:
            return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)

    keyword_possible = not p_only_arguments and not var_args_schema
    if keyword_possible:
        return self.kw_arguments_schema(kw_or_p_arguments + kw_only_arguments, var_kwargs_schema)

    if not prefer_positional:
        positional_possible = not kw_only_arguments and not var_kwargs_schema
        if positional_possible:
            return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)

    raise PydanticInvalidForJsonSchema(
        'Unable to generate JSON schema for arguments validator with positional-only and keyword-only arguments'
    )

kw_arguments_schema

kw_arguments_schema(
    arguments: list[ArgumentsParameter],
    var_kwargs_schema: CoreSchema | None,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a function's keyword arguments.

Parameters:

Name Type Description Default
arguments list[ArgumentsParameter]

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
def kw_arguments_schema(
    self, arguments: list[core_schema.ArgumentsParameter], var_kwargs_schema: CoreSchema | None
) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a function's keyword arguments.

    Args:
        arguments: The core schema.

    Returns:
        The generated JSON schema.
    """
    properties: dict[str, JsonSchemaValue] = {}
    required: list[str] = []
    for argument in arguments:
        name = self.get_argument_name(argument)
        argument_schema = self.generate_inner(argument['schema']).copy()
        argument_schema['title'] = self.get_title_from_name(name)
        properties[name] = argument_schema

        if argument['schema']['type'] != 'default':
            # This assumes that if the argument has a default value,
            # the inner schema must be of type WithDefaultSchema.
            # I believe this is true, but I am not 100% sure
            required.append(name)

    json_schema: JsonSchemaValue = {'type': 'object', 'properties': properties}
    if required:
        json_schema['required'] = required

    if var_kwargs_schema:
        additional_properties_schema = self.generate_inner(var_kwargs_schema)
        if additional_properties_schema:
            json_schema['additionalProperties'] = additional_properties_schema
    else:
        json_schema['additionalProperties'] = False
    return json_schema

p_arguments_schema

p_arguments_schema(
    arguments: list[ArgumentsParameter],
    var_args_schema: CoreSchema | None,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a function's positional arguments.

Parameters:

Name Type Description Default
arguments list[ArgumentsParameter]

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
def p_arguments_schema(
    self, arguments: list[core_schema.ArgumentsParameter], var_args_schema: CoreSchema | None
) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a function's positional arguments.

    Args:
        arguments: The core schema.

    Returns:
        The generated JSON schema.
    """
    prefix_items: list[JsonSchemaValue] = []
    min_items = 0

    for argument in arguments:
        name = self.get_argument_name(argument)

        argument_schema = self.generate_inner(argument['schema']).copy()
        argument_schema['title'] = self.get_title_from_name(name)
        prefix_items.append(argument_schema)

        if argument['schema']['type'] != 'default':
            # This assumes that if the argument has a default value,
            # the inner schema must be of type WithDefaultSchema.
            # I believe this is true, but I am not 100% sure
            min_items += 1

    json_schema: JsonSchemaValue = {'type': 'array'}
    if prefix_items:
        json_schema['prefixItems'] = prefix_items
    if min_items:
        json_schema['minItems'] = min_items

    if var_args_schema:
        items_schema = self.generate_inner(var_args_schema)
        if items_schema:
            json_schema['items'] = items_schema
    else:
        json_schema['maxItems'] = len(prefix_items)

    return json_schema

get_argument_name

get_argument_name(argument: ArgumentsParameter) -> str

Retrieves the name of an argument.

Parameters:

Name Type Description Default
argument ArgumentsParameter

The core schema.

required

Returns:

Type Description
str

The name of the argument.

Source code in pydantic/json_schema.py
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
def get_argument_name(self, argument: core_schema.ArgumentsParameter) -> str:
    """Retrieves the name of an argument.

    Args:
        argument: The core schema.

    Returns:
        The name of the argument.
    """
    name = argument['name']
    if self.by_alias:
        alias = argument.get('alias')
        if isinstance(alias, str):
            name = alias
        else:
            pass  # might want to do something else?
    return name

call_schema

call_schema(schema: CallSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a function call.

Parameters:

Name Type Description Default
schema CallSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
def call_schema(self, schema: core_schema.CallSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a function call.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['arguments_schema'])

custom_error_schema

custom_error_schema(
    schema: CustomErrorSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a custom error.

Parameters:

Name Type Description Default
schema CustomErrorSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
def custom_error_schema(self, schema: core_schema.CustomErrorSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a custom error.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return self.generate_inner(schema['schema'])

json_schema

json_schema(schema: JsonSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a JSON object.

Parameters:

Name Type Description Default
schema JsonSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
def json_schema(self, schema: core_schema.JsonSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a JSON object.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    content_core_schema = schema.get('schema') or core_schema.any_schema()
    content_json_schema = self.generate_inner(content_core_schema)
    if self.mode == 'validation':
        return {'type': 'string', 'contentMediaType': 'application/json', 'contentSchema': content_json_schema}
    else:
        # self.mode == 'serialization'
        return content_json_schema

url_schema

url_schema(schema: UrlSchema) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a URL.

Parameters:

Name Type Description Default
schema UrlSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
def url_schema(self, schema: core_schema.UrlSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a URL.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    json_schema = {'type': 'string', 'format': 'uri', 'minLength': 1}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
    return json_schema

multi_host_url_schema

multi_host_url_schema(
    schema: MultiHostUrlSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a URL that can be used with multiple hosts.

Parameters:

Name Type Description Default
schema MultiHostUrlSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
def multi_host_url_schema(self, schema: core_schema.MultiHostUrlSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a URL that can be used with multiple hosts.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    # Note: 'multi-host-uri' is a custom/pydantic-specific format, not part of the JSON Schema spec
    json_schema = {'type': 'string', 'format': 'multi-host-uri', 'minLength': 1}
    self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
    return json_schema

uuid_schema

uuid_schema(schema: UuidSchema) -> JsonSchemaValue

Generates a JSON schema that matches a UUID.

Parameters:

Name Type Description Default
schema UuidSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
def uuid_schema(self, schema: core_schema.UuidSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a UUID.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'string', 'format': 'uuid'}

definitions_schema

definitions_schema(
    schema: DefinitionsSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that defines a JSON object with definitions.

Parameters:

Name Type Description Default
schema DefinitionsSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
def definitions_schema(self, schema: core_schema.DefinitionsSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that defines a JSON object with definitions.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    for definition in schema['definitions']:
        try:
            self.generate_inner(definition)
        except PydanticInvalidForJsonSchema as e:
            core_ref: CoreRef = CoreRef(definition['ref'])  # type: ignore
            self._core_defs_invalid_for_json_schema[self.get_defs_ref((core_ref, self.mode))] = e
            continue
    return self.generate_inner(schema['schema'])

definition_ref_schema

definition_ref_schema(
    schema: DefinitionReferenceSchema,
) -> JsonSchemaValue

Generates a JSON schema that matches a schema that references a definition.

Parameters:

Name Type Description Default
schema DefinitionReferenceSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
def definition_ref_schema(self, schema: core_schema.DefinitionReferenceSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a schema that references a definition.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    core_ref = CoreRef(schema['schema_ref'])
    _, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
    return ref_json_schema

ser_schema

ser_schema(
    schema: (
        SerSchema | IncExSeqSerSchema | IncExDictSerSchema
    ),
) -> JsonSchemaValue | None

Generates a JSON schema that matches a schema that defines a serialized object.

Parameters:

Name Type Description Default
schema SerSchema | IncExSeqSerSchema | IncExDictSerSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue | None

The generated JSON schema.

Source code in pydantic/json_schema.py
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
def ser_schema(
    self, schema: core_schema.SerSchema | core_schema.IncExSeqSerSchema | core_schema.IncExDictSerSchema
) -> JsonSchemaValue | None:
    """Generates a JSON schema that matches a schema that defines a serialized object.

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    schema_type = schema['type']
    if schema_type == 'function-plain' or schema_type == 'function-wrap':
        # PlainSerializerFunctionSerSchema or WrapSerializerFunctionSerSchema
        return_schema = schema.get('return_schema')
        if return_schema is not None:
            return self.generate_inner(return_schema)
    elif schema_type == 'format' or schema_type == 'to-string':
        # FormatSerSchema or ToStringSerSchema
        return self.str_schema(core_schema.str_schema())
    elif schema['type'] == 'model':
        # ModelSerSchema
        return self.generate_inner(schema['schema'])
    return None

complex_schema

complex_schema(schema: ComplexSchema) -> JsonSchemaValue

Generates a JSON schema that matches a complex number.

JSON has no standard way to represent complex numbers. Complex number is not a numeric type. Here we represent complex number as strings following the rule defined by Python. For instance, '1+2j' is an accepted complex string. Details can be found in Python's complex documentation.

Parameters:

Name Type Description Default
schema ComplexSchema

The core schema.

required

Returns:

Type Description
JsonSchemaValue

The generated JSON schema.

Source code in pydantic/json_schema.py
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
def complex_schema(self, schema: core_schema.ComplexSchema) -> JsonSchemaValue:
    """Generates a JSON schema that matches a complex number.

    JSON has no standard way to represent complex numbers. Complex number is not a numeric
    type. Here we represent complex number as strings following the rule defined by Python.
    For instance, '1+2j' is an accepted complex string. Details can be found in
    [Python's `complex` documentation][complex].

    Args:
        schema: The core schema.

    Returns:
        The generated JSON schema.
    """
    return {'type': 'string'}

get_title_from_name

get_title_from_name(name: str) -> str

Retrieves a title from a name.

Parameters:

Name Type Description Default
name str

The name to retrieve a title from.

required

Returns:

Type Description
str

The title.

Source code in pydantic/json_schema.py
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
def get_title_from_name(self, name: str) -> str:
    """Retrieves a title from a name.

    Args:
        name: The name to retrieve a title from.

    Returns:
        The title.
    """
    return name.title().replace('_', ' ').strip()

field_title_should_be_set

field_title_should_be_set(
    schema: CoreSchemaOrField,
) -> bool

Returns true if a field with the given schema should have a title set based on the field name.

Intuitively, we want this to return true for schemas that wouldn't otherwise provide their own title (e.g., int, float, str), and false for those that would (e.g., BaseModel subclasses).

Parameters:

Name Type Description Default
schema CoreSchemaOrField

The schema to check.

required

Returns:

Type Description
bool

True if the field should have a title set, False otherwise.

Source code in pydantic/json_schema.py
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
def field_title_should_be_set(self, schema: CoreSchemaOrField) -> bool:
    """Returns true if a field with the given schema should have a title set based on the field name.

    Intuitively, we want this to return true for schemas that wouldn't otherwise provide their own title
    (e.g., int, float, str), and false for those that would (e.g., BaseModel subclasses).

    Args:
        schema: The schema to check.

    Returns:
        `True` if the field should have a title set, `False` otherwise.
    """
    if _core_utils.is_core_schema_field(schema):
        if schema['type'] == 'computed-field':
            field_schema = schema['return_schema']
        else:
            field_schema = schema['schema']
        return self.field_title_should_be_set(field_schema)

    elif _core_utils.is_core_schema(schema):
        if schema.get('ref'):  # things with refs, such as models and enums, should not have titles set
            return False
        if schema['type'] in {'default', 'nullable', 'definitions'}:
            return self.field_title_should_be_set(schema['schema'])  # type: ignore[typeddict-item]
        if _core_utils.is_function_with_inner_schema(schema):
            return self.field_title_should_be_set(schema['schema'])
        if schema['type'] == 'definition-ref':
            # Referenced schemas should not have titles set for the same reason
            # schemas with refs should not
            return False
        return True  # anything else should have title set

    else:
        raise PydanticInvalidForJsonSchema(f'Unexpected schema type: schema={schema}')  # pragma: no cover

normalize_name

normalize_name(name: str) -> str

Normalizes a name to be used as a key in a dictionary.

Parameters:

Name Type Description Default
name str

The name to normalize.

required

Returns:

Type Description
str

The normalized name.

Source code in pydantic/json_schema.py
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
def normalize_name(self, name: str) -> str:
    """Normalizes a name to be used as a key in a dictionary.

    Args:
        name: The name to normalize.

    Returns:
        The normalized name.
    """
    return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name).replace('.', '__')

get_defs_ref

get_defs_ref(core_mode_ref: CoreModeRef) -> DefsRef

Override this method to change the way that definitions keys are generated from a core reference.

Parameters:

Name Type Description Default
core_mode_ref CoreModeRef

The core reference.

required

Returns:

Type Description
DefsRef

The definitions key.

Source code in pydantic/json_schema.py
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
def get_defs_ref(self, core_mode_ref: CoreModeRef) -> DefsRef:
    """Override this method to change the way that definitions keys are generated from a core reference.

    Args:
        core_mode_ref: The core reference.

    Returns:
        The definitions key.
    """
    # Split the core ref into "components"; generic origins and arguments are each separate components
    core_ref, mode = core_mode_ref
    components = re.split(r'([\][,])', core_ref)
    # Remove IDs from each component
    components = [x.rsplit(':', 1)[0] for x in components]
    core_ref_no_id = ''.join(components)
    # Remove everything before the last period from each "component"
    components = [re.sub(r'(?:[^.[\]]+\.)+((?:[^.[\]]+))', r'\1', x) for x in components]
    short_ref = ''.join(components)

    mode_title = _MODE_TITLE_MAPPING[mode]

    # It is important that the generated defs_ref values be such that at least one choice will not
    # be generated for any other core_ref. Currently, this should be the case because we include
    # the id of the source type in the core_ref
    name = DefsRef(self.normalize_name(short_ref))
    name_mode = DefsRef(self.normalize_name(short_ref) + f'-{mode_title}')
    module_qualname = DefsRef(self.normalize_name(core_ref_no_id))
    module_qualname_mode = DefsRef(f'{module_qualname}-{mode_title}')
    module_qualname_id = DefsRef(self.normalize_name(core_ref))
    occurrence_index = self._collision_index.get(module_qualname_id)
    if occurrence_index is None:
        self._collision_counter[module_qualname] += 1
        occurrence_index = self._collision_index[module_qualname_id] = self._collision_counter[module_qualname]

    module_qualname_occurrence = DefsRef(f'{module_qualname}__{occurrence_index}')
    module_qualname_occurrence_mode = DefsRef(f'{module_qualname_mode}__{occurrence_index}')

    self._prioritized_defsref_choices[module_qualname_occurrence_mode] = [
        name,
        name_mode,
        module_qualname,
        module_qualname_mode,
        module_qualname_occurrence,
        module_qualname_occurrence_mode,
    ]

    return module_qualname_occurrence_mode

get_cache_defs_ref_schema

get_cache_defs_ref_schema(
    core_ref: CoreRef,
) -> tuple[DefsRef, JsonSchemaValue]

This method wraps the get_defs_ref method with some cache-lookup/population logic, and returns both the produced defs_ref and the JSON schema that will refer to the right definition.

Parameters:

Name Type Description Default
core_ref CoreRef

The core reference to get the definitions reference for.

required

Returns:

Type Description
tuple[DefsRef, JsonSchemaValue]

A tuple of the definitions reference and the JSON schema that will refer to it.

Source code in pydantic/json_schema.py
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
def get_cache_defs_ref_schema(self, core_ref: CoreRef) -> tuple[DefsRef, JsonSchemaValue]:
    """This method wraps the get_defs_ref method with some cache-lookup/population logic,
    and returns both the produced defs_ref and the JSON schema that will refer to the right definition.

    Args:
        core_ref: The core reference to get the definitions reference for.

    Returns:
        A tuple of the definitions reference and the JSON schema that will refer to it.
    """
    core_mode_ref = (core_ref, self.mode)
    maybe_defs_ref = self.core_to_defs_refs.get(core_mode_ref)
    if maybe_defs_ref is not None:
        json_ref = self.core_to_json_refs[core_mode_ref]
        return maybe_defs_ref, {'$ref': json_ref}

    defs_ref = self.get_defs_ref(core_mode_ref)

    # populate the ref translation mappings
    self.core_to_defs_refs[core_mode_ref] = defs_ref
    self.defs_to_core_refs[defs_ref] = core_mode_ref

    json_ref = JsonRef(self.ref_template.format(model=defs_ref))
    self.core_to_json_refs[core_mode_ref] = json_ref
    self.json_to_defs_refs[json_ref] = defs_ref
    ref_json_schema = {'$ref': json_ref}
    return defs_ref, ref_json_schema

handle_ref_overrides

handle_ref_overrides(
    json_schema: JsonSchemaValue,
) -> JsonSchemaValue

Remove any sibling keys that are redundant with the referenced schema.

Parameters:

Name Type Description Default
json_schema JsonSchemaValue

The schema to remove redundant sibling keys from.

required

Returns:

Type Description
JsonSchemaValue

The schema with redundant sibling keys removed.

Source code in pydantic/json_schema.py
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
def handle_ref_overrides(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
    """Remove any sibling keys that are redundant with the referenced schema.

    Args:
        json_schema: The schema to remove redundant sibling keys from.

    Returns:
        The schema with redundant sibling keys removed.
    """
    if '$ref' in json_schema:
        # prevent modifications to the input; this copy may be safe to drop if there is significant overhead
        json_schema = json_schema.copy()

        referenced_json_schema = self.get_schema_from_definitions(JsonRef(json_schema['$ref']))
        if referenced_json_schema is None:
            # This can happen when building schemas for models with not-yet-defined references.
            # It may be a good idea to do a recursive pass at the end of the generation to remove
            # any redundant override keys.
            return json_schema
        for k, v in list(json_schema.items()):
            if k == '$ref':
                continue
            if k in referenced_json_schema and referenced_json_schema[k] == v:
                del json_schema[k]  # redundant key

    return json_schema

encode_default

encode_default(dft: Any) -> Any

Encode a default value to a JSON-serializable value.

This is used to encode default values for fields in the generated JSON schema.

Parameters:

Name Type Description Default
dft Any

The default value to encode.

required

Returns:

Type Description
Any

The encoded default value.

Source code in pydantic/json_schema.py
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
def encode_default(self, dft: Any) -> Any:
    """Encode a default value to a JSON-serializable value.

    This is used to encode default values for fields in the generated JSON schema.

    Args:
        dft: The default value to encode.

    Returns:
        The encoded default value.
    """
    from .type_adapter import TypeAdapter, _type_has_config

    config = self._config
    try:
        default = (
            dft
            if _type_has_config(type(dft))
            else TypeAdapter(type(dft), config=config.config_dict).dump_python(dft, mode='json')
        )
    except PydanticSchemaGenerationError:
        raise pydantic_core.PydanticSerializationError(f'Unable to encode default value {dft}')

    return pydantic_core.to_jsonable_python(
        default,
        timedelta_mode=config.ser_json_timedelta,
        bytes_mode=config.ser_json_bytes,
    )

update_with_validations

update_with_validations(
    json_schema: JsonSchemaValue,
    core_schema: CoreSchema,
    mapping: dict[str, str],
) -> None

Update the json_schema with the corresponding validations specified in the core_schema, using the provided mapping to translate keys in core_schema to the appropriate keys for a JSON schema.

Parameters:

Name Type Description Default
json_schema JsonSchemaValue

The JSON schema to update.

required
core_schema CoreSchema

The core schema to get the validations from.

required
mapping dict[str, str]

A mapping from core_schema attribute names to the corresponding JSON schema attribute names.

required
Source code in pydantic/json_schema.py
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
def update_with_validations(
    self, json_schema: JsonSchemaValue, core_schema: CoreSchema, mapping: dict[str, str]
) -> None:
    """Update the json_schema with the corresponding validations specified in the core_schema,
    using the provided mapping to translate keys in core_schema to the appropriate keys for a JSON schema.

    Args:
        json_schema: The JSON schema to update.
        core_schema: The core schema to get the validations from.
        mapping: A mapping from core_schema attribute names to the corresponding JSON schema attribute names.
    """
    for core_key, json_schema_key in mapping.items():
        if core_key in core_schema:
            json_schema[json_schema_key] = core_schema[core_key]

get_json_ref_counts

get_json_ref_counts(
    json_schema: JsonSchemaValue,
) -> dict[JsonRef, int]

Get all values corresponding to the key '$ref' anywhere in the json_schema.

Source code in pydantic/json_schema.py
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
def get_json_ref_counts(self, json_schema: JsonSchemaValue) -> dict[JsonRef, int]:
    """Get all values corresponding to the key '$ref' anywhere in the json_schema."""
    json_refs: dict[JsonRef, int] = Counter()

    def _add_json_refs(schema: Any) -> None:
        if isinstance(schema, dict):
            if '$ref' in schema:
                json_ref = JsonRef(schema['$ref'])
                if not isinstance(json_ref, str):
                    return  # in this case, '$ref' might have been the name of a property
                already_visited = json_ref in json_refs
                json_refs[json_ref] += 1
                if already_visited:
                    return  # prevent recursion on a definition that was already visited
                try:
                    defs_ref = self.json_to_defs_refs[json_ref]
                    if defs_ref in self._core_defs_invalid_for_json_schema:
                        raise self._core_defs_invalid_for_json_schema[defs_ref]
                    _add_json_refs(self.definitions[defs_ref])
                except KeyError:
                    if not json_ref.startswith(('http://', 'https://')):
                        raise

            for k, v in schema.items():
                if k == 'examples':
                    continue  # skip refs processing for examples, allow arbitrary values / refs
                _add_json_refs(v)
        elif isinstance(schema, list):
            for v in schema:
                _add_json_refs(v)

    _add_json_refs(json_schema)
    return json_refs

emit_warning

emit_warning(
    kind: JsonSchemaWarningKind, detail: str
) -> None

This method simply emits PydanticJsonSchemaWarnings based on handling in the warning_message method.

Source code in pydantic/json_schema.py
2276
2277
2278
2279
2280
def emit_warning(self, kind: JsonSchemaWarningKind, detail: str) -> None:
    """This method simply emits PydanticJsonSchemaWarnings based on handling in the `warning_message` method."""
    message = self.render_warning_message(kind, detail)
    if message is not None:
        warnings.warn(message, PydanticJsonSchemaWarning)

render_warning_message

render_warning_message(
    kind: JsonSchemaWarningKind, detail: str
) -> str | None

This method is responsible for ignoring warnings as desired, and for formatting the warning messages.

You can override the value of ignored_warning_kinds in a subclass of GenerateJsonSchema to modify what warnings are generated. If you want more control, you can override this method; just return None in situations where you don't want warnings to be emitted.

Parameters:

Name Type Description Default
kind JsonSchemaWarningKind

The kind of warning to render. It can be one of the following:

  • 'skipped-choice': A choice field was skipped because it had no valid choices.
  • 'non-serializable-default': A default value was skipped because it was not JSON-serializable.
required
detail str

A string with additional details about the warning.

required

Returns:

Type Description
str | None

The formatted warning message, or None if no warning should be emitted.

Source code in pydantic/json_schema.py
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
def render_warning_message(self, kind: JsonSchemaWarningKind, detail: str) -> str | None:
    """This method is responsible for ignoring warnings as desired, and for formatting the warning messages.

    You can override the value of `ignored_warning_kinds` in a subclass of GenerateJsonSchema
    to modify what warnings are generated. If you want more control, you can override this method;
    just return None in situations where you don't want warnings to be emitted.

    Args:
        kind: The kind of warning to render. It can be one of the following:

            - 'skipped-choice': A choice field was skipped because it had no valid choices.
            - 'non-serializable-default': A default value was skipped because it was not JSON-serializable.
        detail: A string with additional details about the warning.

    Returns:
        The formatted warning message, or `None` if no warning should be emitted.
    """
    if kind in self.ignored_warning_kinds:
        return None
    return f'{detail} [{kind}]'

WithJsonSchema dataclass

WithJsonSchema(
    json_schema: JsonSchemaValue | None,
    mode: (
        Literal["validation", "serialization"] | None
    ) = None,
)

Usage Documentation

WithJsonSchema Annotation

Add this as an annotation on a field to override the (base) JSON schema that would be generated for that field. This provides a way to set a JSON schema for types that would otherwise raise errors when producing a JSON schema, such as Callable, or types that have an is-instance core schema, without needing to go so far as creating a custom subclass of pydantic.json_schema.GenerateJsonSchema. Note that any modifications to the schema that would normally be made (such as setting the title for model fields) will still be performed.

If mode is set this will only apply to that schema generation mode, allowing you to set different json schemas for validation and serialization.

Examples

Examples(
    examples: dict[str, Any] | list[Any],
    mode: (
        Literal["validation", "serialization"] | None
    ) = None,
)

Add examples to a JSON schema.

If the JSON Schema already contains examples, the provided examples will be appended.

If mode is set this will only apply to that schema generation mode, allowing you to add different examples for validation and serialization.

Source code in pydantic/json_schema.py
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
def __init__(
    self, examples: dict[str, Any] | list[Any], mode: Literal['validation', 'serialization'] | None = None
) -> None:
    if isinstance(examples, dict):
        warnings.warn(
            'Using a dict for `examples` is deprecated, use a list instead.',
            PydanticDeprecatedSince29,
            stacklevel=2,
        )
    self.examples = examples
    self.mode = mode

SkipJsonSchema dataclass

SkipJsonSchema()

Usage Documentation

SkipJsonSchema Annotation

Add this as an annotation on a field to skip generating a JSON schema for that field.

Example
from typing import Union

from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema

from pprint import pprint

class Model(BaseModel):
    a: Union[int, None] = None  # (1)!
    b: Union[int, SkipJsonSchema[None]] = None  # (2)!
    c: SkipJsonSchema[Union[int, None]] = None  # (3)!

pprint(Model.model_json_schema())
'''
{
    'properties': {
        'a': {
            'anyOf': [
                {'type': 'integer'},
                {'type': 'null'}
            ],
            'default': None,
            'title': 'A'
        },
        'b': {
            'default': None,
            'title': 'B',
            'type': 'integer'
        }
    },
    'title': 'Model',
    'type': 'object'
}
'''
  1. The integer and null types are both included in the schema for a.
  2. The integer type is the only type included in the schema for b.
  3. The entirety of the c field is omitted from the schema.

model_json_schema

model_json_schema(
    cls: type[BaseModel] | type[PydanticDataclass],
    by_alias: bool = True,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[
        GenerateJsonSchema
    ] = GenerateJsonSchema,
    mode: JsonSchemaMode = "validation",
) -> dict[str, Any]

Utility function to generate a JSON Schema for a model.

Parameters:

Name Type Description Default
cls type[BaseModel] | type[PydanticDataclass]

The model class to generate a JSON Schema for.

required
by_alias bool

If True (the default), fields will be serialized according to their alias. If False, fields will be serialized according to their attribute name.

True
ref_template str

The template to use for generating JSON Schema references.

DEFAULT_REF_TEMPLATE
schema_generator type[GenerateJsonSchema]

The class to use for generating the JSON Schema.

GenerateJsonSchema
mode JsonSchemaMode

The mode to use for generating the JSON Schema. It can be one of the following:

  • 'validation': Generate a JSON Schema for validating data.
  • 'serialization': Generate a JSON Schema for serializing data.
'validation'

Returns:

Type Description
dict[str, Any]

The generated JSON Schema.

Source code in pydantic/json_schema.py
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
def model_json_schema(
    cls: type[BaseModel] | type[PydanticDataclass],
    by_alias: bool = True,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
    mode: JsonSchemaMode = 'validation',
) -> dict[str, Any]:
    """Utility function to generate a JSON Schema for a model.

    Args:
        cls: The model class to generate a JSON Schema for.
        by_alias: If `True` (the default), fields will be serialized according to their alias.
            If `False`, fields will be serialized according to their attribute name.
        ref_template: The template to use for generating JSON Schema references.
        schema_generator: The class to use for generating the JSON Schema.
        mode: The mode to use for generating the JSON Schema. It can be one of the following:

            - 'validation': Generate a JSON Schema for validating data.
            - 'serialization': Generate a JSON Schema for serializing data.

    Returns:
        The generated JSON Schema.
    """
    from .main import BaseModel

    schema_generator_instance = schema_generator(by_alias=by_alias, ref_template=ref_template)

    if isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema):
        cls.__pydantic_core_schema__.rebuild()

    if cls is BaseModel:
        raise AttributeError('model_json_schema() must be called on a subclass of BaseModel, not BaseModel itself.')

    assert not isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema), 'this is a bug! please report it'
    return schema_generator_instance.generate(cls.__pydantic_core_schema__, mode=mode)

models_json_schema

models_json_schema(
    models: Sequence[
        tuple[
            type[BaseModel] | type[PydanticDataclass],
            JsonSchemaMode,
        ]
    ],
    *,
    by_alias: bool = True,
    title: str | None = None,
    description: str | None = None,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[
        GenerateJsonSchema
    ] = GenerateJsonSchema
) -> tuple[
    dict[
        tuple[
            type[BaseModel] | type[PydanticDataclass],
            JsonSchemaMode,
        ],
        JsonSchemaValue,
    ],
    JsonSchemaValue,
]

Utility function to generate a JSON Schema for multiple models.

Parameters:

Name Type Description Default
models Sequence[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode]]

A sequence of tuples of the form (model, mode).

required
by_alias bool

Whether field aliases should be used as keys in the generated JSON Schema.

True
title str | None

The title of the generated JSON Schema.

None
description str | None

The description of the generated JSON Schema.

None
ref_template str

The reference template to use for generating JSON Schema references.

DEFAULT_REF_TEMPLATE
schema_generator type[GenerateJsonSchema]

The schema generator to use for generating the JSON Schema.

GenerateJsonSchema

Returns:

Type Description
tuple[dict[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]

A tuple where: - The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have JsonRef references to definitions that are defined in the second returned element.) - The second element is a JSON schema containing all definitions referenced in the first returned element, along with the optional title and description keys.

Source code in pydantic/json_schema.py
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
def models_json_schema(
    models: Sequence[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode]],
    *,
    by_alias: bool = True,
    title: str | None = None,
    description: str | None = None,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
) -> tuple[dict[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]:
    """Utility function to generate a JSON Schema for multiple models.

    Args:
        models: A sequence of tuples of the form (model, mode).
        by_alias: Whether field aliases should be used as keys in the generated JSON Schema.
        title: The title of the generated JSON Schema.
        description: The description of the generated JSON Schema.
        ref_template: The reference template to use for generating JSON Schema references.
        schema_generator: The schema generator to use for generating the JSON Schema.

    Returns:
        A tuple where:
            - The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
                whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
                JsonRef references to definitions that are defined in the second returned element.)
            - The second element is a JSON schema containing all definitions referenced in the first returned
                    element, along with the optional title and description keys.
    """
    for cls, _ in models:
        if isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema):
            cls.__pydantic_core_schema__.rebuild()

    instance = schema_generator(by_alias=by_alias, ref_template=ref_template)
    inputs: list[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode, CoreSchema]] = [
        (m, mode, m.__pydantic_core_schema__) for m, mode in models
    ]
    json_schemas_map, definitions = instance.generate_definitions(inputs)

    json_schema: dict[str, Any] = {}
    if definitions:
        json_schema['$defs'] = definitions
    if title:
        json_schema['title'] = title
    if description:
        json_schema['description'] = description

    return json_schemas_map, json_schema