Skip to content

Fields

Defining fields on models.

Field

Field(
    default: Any = PydanticUndefined,
    *,
    default_factory: (
        Callable[[], Any]
        | Callable[[dict[str, Any]], Any]
        | None
    ) = _Unset,
    alias: str | None = _Unset,
    alias_priority: int | None = _Unset,
    validation_alias: (
        str | AliasPath | AliasChoices | None
    ) = _Unset,
    serialization_alias: str | None = _Unset,
    title: str | None = _Unset,
    field_title_generator: (
        Callable[[str, FieldInfo], str] | None
    ) = _Unset,
    description: str | None = _Unset,
    examples: list[Any] | None = _Unset,
    exclude: bool | None = _Unset,
    discriminator: str | Discriminator | None = _Unset,
    deprecated: Deprecated | str | bool | None = _Unset,
    json_schema_extra: (
        JsonDict | Callable[[JsonDict], None] | None
    ) = _Unset,
    frozen: bool | None = _Unset,
    validate_default: bool | None = _Unset,
    repr: bool = _Unset,
    init: bool | None = _Unset,
    init_var: bool | None = _Unset,
    kw_only: bool | None = _Unset,
    pattern: str | Pattern[str] | None = _Unset,
    strict: bool | None = _Unset,
    coerce_numbers_to_str: bool | None = _Unset,
    gt: SupportsGt | None = _Unset,
    ge: SupportsGe | None = _Unset,
    lt: SupportsLt | None = _Unset,
    le: SupportsLe | None = _Unset,
    multiple_of: float | None = _Unset,
    allow_inf_nan: bool | None = _Unset,
    max_digits: int | None = _Unset,
    decimal_places: int | None = _Unset,
    min_length: int | None = _Unset,
    max_length: int | None = _Unset,
    union_mode: Literal["smart", "left_to_right"] = _Unset,
    fail_fast: bool | None = _Unset,
    **extra: Unpack[_EmptyKwargs]
) -> Any

Usage Documentation

Fields

Create a field for objects that can be configured.

Used to provide extra information about a field, either for the model schema or complex validation. Some arguments apply only to number fields (int, float, Decimal) and some apply only to str.

Note
  • Any _Unset objects will be replaced by the corresponding value defined in the _DefaultValues dictionary. If a key for the _Unset object is not found in the _DefaultValues dictionary, it will default to None

Parameters:

Name Type Description Default
default Any

Default value if the field is not set.

PydanticUndefined
default_factory Callable[[], Any] | Callable[[dict[str, Any]], Any] | None

A callable to generate the default value. The callable can either take 0 arguments (in which case it is called as is) or a single argument containing the already validated data.

_Unset
alias str | None

The name to use for the attribute when validating or serializing by alias. This is often used for things like converting between snake and camel case.

_Unset
alias_priority int | None

Priority of the alias. This affects whether an alias generator is used.

_Unset
validation_alias str | AliasPath | AliasChoices | None

Like alias, but only affects validation, not serialization.

_Unset
serialization_alias str | None

Like alias, but only affects serialization, not validation.

_Unset
title str | None

Human-readable title.

_Unset
field_title_generator Callable[[str, FieldInfo], str] | None

A callable that takes a field name and returns title for it.

_Unset
description str | None

Human-readable description.

_Unset
examples list[Any] | None

Example values for this field.

_Unset
exclude bool | None

Whether to exclude the field from the model serialization.

_Unset
discriminator str | Discriminator | None

Field name or Discriminator for discriminating the type in a tagged union.

_Unset
deprecated Deprecated | str | bool | None

A deprecation message, an instance of warnings.deprecated or the typing_extensions.deprecated backport, or a boolean. If True, a default deprecation message will be emitted when accessing the field.

_Unset
json_schema_extra JsonDict | Callable[[JsonDict], None] | None

A dict or callable to provide extra JSON schema properties.

_Unset
frozen bool | None

Whether the field is frozen. If true, attempts to change the value on an instance will raise an error.

_Unset
validate_default bool | None

If True, apply validation to the default value every time you create an instance. Otherwise, for performance reasons, the default value of the field is trusted and not validated.

_Unset
repr bool

A boolean indicating whether to include the field in the __repr__ output.

_Unset
init bool | None

Whether the field should be included in the constructor of the dataclass. (Only applies to dataclasses.)

_Unset
init_var bool | None

Whether the field should only be included in the constructor of the dataclass. (Only applies to dataclasses.)

_Unset
kw_only bool | None

Whether the field should be a keyword-only argument in the constructor of the dataclass. (Only applies to dataclasses.)

_Unset
coerce_numbers_to_str bool | None

Whether to enable coercion of any Number type to str (not applicable in strict mode).

_Unset
strict bool | None

If True, strict validation is applied to the field. See Strict Mode for details.

_Unset
gt SupportsGt | None

Greater than. If set, value must be greater than this. Only applicable to numbers.

_Unset
ge SupportsGe | None

Greater than or equal. If set, value must be greater than or equal to this. Only applicable to numbers.

_Unset
lt SupportsLt | None

Less than. If set, value must be less than this. Only applicable to numbers.

_Unset
le SupportsLe | None

Less than or equal. If set, value must be less than or equal to this. Only applicable to numbers.

_Unset
multiple_of float | None

Value must be a multiple of this. Only applicable to numbers.

_Unset
min_length int | None

Minimum length for iterables.

_Unset
max_length int | None

Maximum length for iterables.

_Unset
pattern str | Pattern[str] | None

Pattern for strings (a regular expression).

_Unset
allow_inf_nan bool | None

Allow inf, -inf, nan. Only applicable to numbers.

_Unset
max_digits int | None

Maximum number of allow digits for strings.

_Unset
decimal_places int | None

Maximum number of decimal places allowed for numbers.

_Unset
union_mode Literal['smart', 'left_to_right']

The strategy to apply when validating a union. Can be smart (the default), or left_to_right. See Union Mode for details.

_Unset
fail_fast bool | None

If True, validation will stop on the first error. If False, all validation errors will be collected. This option can be applied only to iterable types (list, tuple, set, and frozenset).

_Unset
extra Unpack[_EmptyKwargs]

(Deprecated) Extra fields that will be included in the JSON schema.

Warning

The extra kwargs is deprecated. Use json_schema_extra instead.

{}

Returns:

Type Description
Any

A new FieldInfo. The return annotation is Any so Field can be used on type-annotated fields without causing a type error.

Source code in pydantic/fields.py
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def Field(  # noqa: C901
    default: Any = PydanticUndefined,
    *,
    default_factory: Callable[[], Any] | Callable[[dict[str, Any]], Any] | None = _Unset,
    alias: str | None = _Unset,
    alias_priority: int | None = _Unset,
    validation_alias: str | AliasPath | AliasChoices | None = _Unset,
    serialization_alias: str | None = _Unset,
    title: str | None = _Unset,
    field_title_generator: Callable[[str, FieldInfo], str] | None = _Unset,
    description: str | None = _Unset,
    examples: list[Any] | None = _Unset,
    exclude: bool | None = _Unset,
    discriminator: str | types.Discriminator | None = _Unset,
    deprecated: Deprecated | str | bool | None = _Unset,
    json_schema_extra: JsonDict | Callable[[JsonDict], None] | None = _Unset,
    frozen: bool | None = _Unset,
    validate_default: bool | None = _Unset,
    repr: bool = _Unset,
    init: bool | None = _Unset,
    init_var: bool | None = _Unset,
    kw_only: bool | None = _Unset,
    pattern: str | typing.Pattern[str] | None = _Unset,
    strict: bool | None = _Unset,
    coerce_numbers_to_str: bool | None = _Unset,
    gt: annotated_types.SupportsGt | None = _Unset,
    ge: annotated_types.SupportsGe | None = _Unset,
    lt: annotated_types.SupportsLt | None = _Unset,
    le: annotated_types.SupportsLe | None = _Unset,
    multiple_of: float | None = _Unset,
    allow_inf_nan: bool | None = _Unset,
    max_digits: int | None = _Unset,
    decimal_places: int | None = _Unset,
    min_length: int | None = _Unset,
    max_length: int | None = _Unset,
    union_mode: Literal['smart', 'left_to_right'] = _Unset,
    fail_fast: bool | None = _Unset,
    **extra: Unpack[_EmptyKwargs],
) -> Any:
    """!!! abstract "Usage Documentation"
        [Fields](../concepts/fields.md)

    Create a field for objects that can be configured.

    Used to provide extra information about a field, either for the model schema or complex validation. Some arguments
    apply only to number fields (`int`, `float`, `Decimal`) and some apply only to `str`.

    Note:
        - Any `_Unset` objects will be replaced by the corresponding value defined in the `_DefaultValues` dictionary. If a key for the `_Unset` object is not found in the `_DefaultValues` dictionary, it will default to `None`

    Args:
        default: Default value if the field is not set.
        default_factory: A callable to generate the default value. The callable can either take 0 arguments
            (in which case it is called as is) or a single argument containing the already validated data.
        alias: The name to use for the attribute when validating or serializing by alias.
            This is often used for things like converting between snake and camel case.
        alias_priority: Priority of the alias. This affects whether an alias generator is used.
        validation_alias: Like `alias`, but only affects validation, not serialization.
        serialization_alias: Like `alias`, but only affects serialization, not validation.
        title: Human-readable title.
        field_title_generator: A callable that takes a field name and returns title for it.
        description: Human-readable description.
        examples: Example values for this field.
        exclude: Whether to exclude the field from the model serialization.
        discriminator: Field name or Discriminator for discriminating the type in a tagged union.
        deprecated: A deprecation message, an instance of `warnings.deprecated` or the `typing_extensions.deprecated` backport,
            or a boolean. If `True`, a default deprecation message will be emitted when accessing the field.
        json_schema_extra: A dict or callable to provide extra JSON schema properties.
        frozen: Whether the field is frozen. If true, attempts to change the value on an instance will raise an error.
        validate_default: If `True`, apply validation to the default value every time you create an instance.
            Otherwise, for performance reasons, the default value of the field is trusted and not validated.
        repr: A boolean indicating whether to include the field in the `__repr__` output.
        init: Whether the field should be included in the constructor of the dataclass.
            (Only applies to dataclasses.)
        init_var: Whether the field should _only_ be included in the constructor of the dataclass.
            (Only applies to dataclasses.)
        kw_only: Whether the field should be a keyword-only argument in the constructor of the dataclass.
            (Only applies to dataclasses.)
        coerce_numbers_to_str: Whether to enable coercion of any `Number` type to `str` (not applicable in `strict` mode).
        strict: If `True`, strict validation is applied to the field.
            See [Strict Mode](../concepts/strict_mode.md) for details.
        gt: Greater than. If set, value must be greater than this. Only applicable to numbers.
        ge: Greater than or equal. If set, value must be greater than or equal to this. Only applicable to numbers.
        lt: Less than. If set, value must be less than this. Only applicable to numbers.
        le: Less than or equal. If set, value must be less than or equal to this. Only applicable to numbers.
        multiple_of: Value must be a multiple of this. Only applicable to numbers.
        min_length: Minimum length for iterables.
        max_length: Maximum length for iterables.
        pattern: Pattern for strings (a regular expression).
        allow_inf_nan: Allow `inf`, `-inf`, `nan`. Only applicable to numbers.
        max_digits: Maximum number of allow digits for strings.
        decimal_places: Maximum number of decimal places allowed for numbers.
        union_mode: The strategy to apply when validating a union. Can be `smart` (the default), or `left_to_right`.
            See [Union Mode](../concepts/unions.md#union-modes) for details.
        fail_fast: If `True`, validation will stop on the first error. If `False`, all validation errors will be collected.
            This option can be applied only to iterable types (list, tuple, set, and frozenset).
        extra: (Deprecated) Extra fields that will be included in the JSON schema.

            !!! warning Deprecated
                The `extra` kwargs is deprecated. Use `json_schema_extra` instead.

    Returns:
        A new [`FieldInfo`][pydantic.fields.FieldInfo]. The return annotation is `Any` so `Field` can be used on
            type-annotated fields without causing a type error.
    """
    # Check deprecated and removed params from V1. This logic should eventually be removed.
    const = extra.pop('const', None)  # type: ignore
    if const is not None:
        raise PydanticUserError('`const` is removed, use `Literal` instead', code='removed-kwargs')

    min_items = extra.pop('min_items', None)  # type: ignore
    if min_items is not None:
        warn('`min_items` is deprecated and will be removed, use `min_length` instead', DeprecationWarning)
        if min_length in (None, _Unset):
            min_length = min_items  # type: ignore

    max_items = extra.pop('max_items', None)  # type: ignore
    if max_items is not None:
        warn('`max_items` is deprecated and will be removed, use `max_length` instead', DeprecationWarning)
        if max_length in (None, _Unset):
            max_length = max_items  # type: ignore

    unique_items = extra.pop('unique_items', None)  # type: ignore
    if unique_items is not None:
        raise PydanticUserError(
            (
                '`unique_items` is removed, use `Set` instead'
                '(this feature is discussed in https://github.com/pydantic/pydantic-core/issues/296)'
            ),
            code='removed-kwargs',
        )

    allow_mutation = extra.pop('allow_mutation', None)  # type: ignore
    if allow_mutation is not None:
        warn('`allow_mutation` is deprecated and will be removed. use `frozen` instead', DeprecationWarning)
        if allow_mutation is False:
            frozen = True

    regex = extra.pop('regex', None)  # type: ignore
    if regex is not None:
        raise PydanticUserError('`regex` is removed. use `pattern` instead', code='removed-kwargs')

    if extra:
        warn(
            'Using extra keyword arguments on `Field` is deprecated and will be removed.'
            ' Use `json_schema_extra` instead.'
            f' (Extra keys: {", ".join(k.__repr__() for k in extra.keys())})',
            DeprecationWarning,
        )
        if not json_schema_extra or json_schema_extra is _Unset:
            json_schema_extra = extra  # type: ignore

    if (
        validation_alias
        and validation_alias is not _Unset
        and not isinstance(validation_alias, (str, AliasChoices, AliasPath))
    ):
        raise TypeError('Invalid `validation_alias` type. it should be `str`, `AliasChoices`, or `AliasPath`')

    if serialization_alias in (_Unset, None) and isinstance(alias, str):
        serialization_alias = alias

    if validation_alias in (_Unset, None):
        validation_alias = alias

    include = extra.pop('include', None)  # type: ignore
    if include is not None:
        warn('`include` is deprecated and does nothing. It will be removed, use `exclude` instead', DeprecationWarning)

    return FieldInfo.from_field(
        default,
        default_factory=default_factory,
        alias=alias,
        alias_priority=alias_priority,
        validation_alias=validation_alias,
        serialization_alias=serialization_alias,
        title=title,
        field_title_generator=field_title_generator,
        description=description,
        examples=examples,
        exclude=exclude,
        discriminator=discriminator,
        deprecated=deprecated,
        json_schema_extra=json_schema_extra,
        frozen=frozen,
        pattern=pattern,
        validate_default=validate_default,
        repr=repr,
        init=init,
        init_var=init_var,
        kw_only=kw_only,
        coerce_numbers_to_str=coerce_numbers_to_str,
        strict=strict,
        gt=gt,
        ge=ge,
        lt=lt,
        le=le,
        multiple_of=multiple_of,
        min_length=min_length,
        max_length=max_length,
        allow_inf_nan=allow_inf_nan,
        max_digits=max_digits,
        decimal_places=decimal_places,
        union_mode=union_mode,
        fail_fast=fail_fast,
    )

FieldInfo

FieldInfo(**kwargs: Unpack[_FieldInfoInputs])

Bases: Representation

This class holds information about a field.

FieldInfo is used for any field definition regardless of whether the Field() function is explicitly used.

Warning

You generally shouldn't be creating FieldInfo directly, you'll only need to use it when accessing BaseModel .model_fields internals.

Attributes:

Name Type Description
annotation type[Any] | None

The type annotation of the field.

default Any

The default value of the field.

default_factory Callable[[], Any] | Callable[[dict[str, Any]], Any] | None

A callable to generate the default value. The callable can either take 0 arguments (in which case it is called as is) or a single argument containing the already validated data.

alias str | None

The alias name of the field.

alias_priority int | None

The priority of the field's alias.

validation_alias str | AliasPath | AliasChoices | None

The validation alias of the field.

serialization_alias str | None

The serialization alias of the field.

title str | None

The title of the field.

field_title_generator Callable[[str, FieldInfo], str] | None

A callable that takes a field name and returns title for it.

description str | None

The description of the field.

examples list[Any] | None

List of examples of the field.

exclude bool | None

Whether to exclude the field from the model serialization.

discriminator str | Discriminator | None

Field name or Discriminator for discriminating the type in a tagged union.

deprecated Deprecated | str | bool | None

A deprecation message, an instance of warnings.deprecated or the typing_extensions.deprecated backport, or a boolean. If True, a default deprecation message will be emitted when accessing the field.

json_schema_extra JsonDict | Callable[[JsonDict], None] | None

A dict or callable to provide extra JSON schema properties.

frozen bool | None

Whether the field is frozen.

validate_default bool | None

Whether to validate the default value of the field.

repr bool

Whether to include the field in representation of the model.

init bool | None

Whether the field should be included in the constructor of the dataclass.

init_var bool | None

Whether the field should only be included in the constructor of the dataclass, and not stored.

kw_only bool | None

Whether the field should be a keyword-only argument in the constructor of the dataclass.

metadata list[Any]

List of metadata constraints.

See the signature of pydantic.fields.Field for more details about the expected arguments.

Source code in pydantic/fields.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def __init__(self, **kwargs: Unpack[_FieldInfoInputs]) -> None:
    """This class should generally not be initialized directly; instead, use the `pydantic.fields.Field` function
    or one of the constructor classmethods.

    See the signature of `pydantic.fields.Field` for more details about the expected arguments.
    """
    self._attributes_set = {k: v for k, v in kwargs.items() if v is not _Unset}
    kwargs = {k: _DefaultValues.get(k) if v is _Unset else v for k, v in kwargs.items()}  # type: ignore
    self.annotation, annotation_metadata = self._extract_metadata(kwargs.get('annotation'))
    self.evaluated = False

    default = kwargs.pop('default', PydanticUndefined)
    if default is Ellipsis:
        self.default = PydanticUndefined
        # Also remove it from the attributes set, otherwise
        # `GenerateSchema._common_field_schema` mistakenly
        # uses it:
        self._attributes_set.pop('default', None)
    else:
        self.default = default

    self.default_factory = kwargs.pop('default_factory', None)

    if self.default is not PydanticUndefined and self.default_factory is not None:
        raise TypeError('cannot specify both default and default_factory')

    self.alias = kwargs.pop('alias', None)
    self.validation_alias = kwargs.pop('validation_alias', None)
    self.serialization_alias = kwargs.pop('serialization_alias', None)
    alias_is_set = any(alias is not None for alias in (self.alias, self.validation_alias, self.serialization_alias))
    self.alias_priority = kwargs.pop('alias_priority', None) or 2 if alias_is_set else None
    self.title = kwargs.pop('title', None)
    self.field_title_generator = kwargs.pop('field_title_generator', None)
    self.description = kwargs.pop('description', None)
    self.examples = kwargs.pop('examples', None)
    self.exclude = kwargs.pop('exclude', None)
    self.discriminator = kwargs.pop('discriminator', None)
    # For compatibility with FastAPI<=0.110.0, we preserve the existing value if it is not overridden
    self.deprecated = kwargs.pop('deprecated', getattr(self, 'deprecated', None))
    self.repr = kwargs.pop('repr', True)
    self.json_schema_extra = kwargs.pop('json_schema_extra', None)
    self.validate_default = kwargs.pop('validate_default', None)
    self.frozen = kwargs.pop('frozen', None)
    # currently only used on dataclasses
    self.init = kwargs.pop('init', None)
    self.init_var = kwargs.pop('init_var', None)
    self.kw_only = kwargs.pop('kw_only', None)

    self.metadata = self._collect_metadata(kwargs) + annotation_metadata  # type: ignore

from_field staticmethod

from_field(
    default: Any = PydanticUndefined,
    **kwargs: Unpack[_FromFieldInfoInputs]
) -> FieldInfo

Create a new FieldInfo object with the Field function.

Parameters:

Name Type Description Default
default Any

The default value for the field. Defaults to Undefined.

PydanticUndefined
**kwargs Unpack[_FromFieldInfoInputs]

Additional arguments dictionary.

{}

Raises:

Type Description
TypeError

If 'annotation' is passed as a keyword argument.

Returns:

Type Description
FieldInfo

A new FieldInfo object with the given parameters.

Example

This is how you can create a field with default value like this:

import pydantic

class MyModel(pydantic.BaseModel):
    foo: int = pydantic.Field(4)
Source code in pydantic/fields.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@staticmethod
def from_field(default: Any = PydanticUndefined, **kwargs: Unpack[_FromFieldInfoInputs]) -> FieldInfo:
    """Create a new `FieldInfo` object with the `Field` function.

    Args:
        default: The default value for the field. Defaults to Undefined.
        **kwargs: Additional arguments dictionary.

    Raises:
        TypeError: If 'annotation' is passed as a keyword argument.

    Returns:
        A new FieldInfo object with the given parameters.

    Example:
        This is how you can create a field with default value like this:

        ```python
        import pydantic

        class MyModel(pydantic.BaseModel):
            foo: int = pydantic.Field(4)
        ```
    """
    if 'annotation' in kwargs:
        raise TypeError('"annotation" is not permitted as a Field keyword argument')
    return FieldInfo(default=default, **kwargs)

from_annotation staticmethod

from_annotation(annotation: type[Any]) -> FieldInfo

Creates a FieldInfo instance from a bare annotation.

This function is used internally to create a FieldInfo from a bare annotation like this:

import pydantic

class MyModel(pydantic.BaseModel):
    foo: int  # <-- like this

We also account for the case where the annotation can be an instance of Annotated and where one of the (not first) arguments in Annotated is an instance of FieldInfo, e.g.:

import annotated_types
from typing_extensions import Annotated

import pydantic

class MyModel(pydantic.BaseModel):
    foo: Annotated[int, annotated_types.Gt(42)]
    bar: Annotated[int, pydantic.Field(gt=42)]

Parameters:

Name Type Description Default
annotation type[Any]

An annotation object.

required

Returns:

Type Description
FieldInfo

An instance of the field metadata.

Source code in pydantic/fields.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
@staticmethod
def from_annotation(annotation: type[Any]) -> FieldInfo:
    """Creates a `FieldInfo` instance from a bare annotation.

    This function is used internally to create a `FieldInfo` from a bare annotation like this:

    ```python
    import pydantic

    class MyModel(pydantic.BaseModel):
        foo: int  # <-- like this
    ```

    We also account for the case where the annotation can be an instance of `Annotated` and where
    one of the (not first) arguments in `Annotated` is an instance of `FieldInfo`, e.g.:

    ```python
    import annotated_types
    from typing_extensions import Annotated

    import pydantic

    class MyModel(pydantic.BaseModel):
        foo: Annotated[int, annotated_types.Gt(42)]
        bar: Annotated[int, pydantic.Field(gt=42)]
    ```

    Args:
        annotation: An annotation object.

    Returns:
        An instance of the field metadata.
    """
    final = False
    if _typing_extra.is_finalvar(annotation):
        final = True
        if annotation is not typing_extensions.Final:
            annotation = typing_extensions.get_args(annotation)[0]

    if _typing_extra.is_annotated(annotation):
        first_arg, *extra_args = typing_extensions.get_args(annotation)
        if _typing_extra.is_finalvar(first_arg):
            final = True
        field_info_annotations = [a for a in extra_args if isinstance(a, FieldInfo)]
        field_info = FieldInfo.merge_field_infos(*field_info_annotations, annotation=first_arg)
        if field_info:
            new_field_info = copy(field_info)
            new_field_info.annotation = first_arg
            new_field_info.frozen = final or field_info.frozen
            metadata: list[Any] = []
            for a in extra_args:
                if _typing_extra.is_deprecated_instance(a):
                    new_field_info.deprecated = a.message
                elif not isinstance(a, FieldInfo):
                    metadata.append(a)
                else:
                    metadata.extend(a.metadata)
            new_field_info.metadata = metadata
            return new_field_info

    return FieldInfo(annotation=annotation, frozen=final or None)  # pyright: ignore[reportArgumentType]

from_annotated_attribute staticmethod

from_annotated_attribute(
    annotation: type[Any], default: Any
) -> FieldInfo

Create FieldInfo from an annotation with a default value.

This is used in cases like the following:

import annotated_types
from typing_extensions import Annotated

import pydantic

class MyModel(pydantic.BaseModel):
    foo: int = 4  # <-- like this
    bar: Annotated[int, annotated_types.Gt(4)] = 4  # <-- or this
    spam: Annotated[int, pydantic.Field(gt=4)] = 4  # <-- or this

Parameters:

Name Type Description Default
annotation type[Any]

The type annotation of the field.

required
default Any

The default value of the field.

required

Returns:

Type Description
FieldInfo

A field object with the passed values.

Source code in pydantic/fields.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
@staticmethod
def from_annotated_attribute(annotation: type[Any], default: Any) -> FieldInfo:
    """Create `FieldInfo` from an annotation with a default value.

    This is used in cases like the following:

    ```python
    import annotated_types
    from typing_extensions import Annotated

    import pydantic

    class MyModel(pydantic.BaseModel):
        foo: int = 4  # <-- like this
        bar: Annotated[int, annotated_types.Gt(4)] = 4  # <-- or this
        spam: Annotated[int, pydantic.Field(gt=4)] = 4  # <-- or this
    ```

    Args:
        annotation: The type annotation of the field.
        default: The default value of the field.

    Returns:
        A field object with the passed values.
    """
    if annotation is default:
        raise PydanticUserError(
            'Error when building FieldInfo from annotated attribute. '
            "Make sure you don't have any field name clashing with a type annotation ",
            code='unevaluable-type-annotation',
        )

    final = _typing_extra.is_finalvar(annotation)
    if final and annotation is not typing_extensions.Final:
        annotation = typing_extensions.get_args(annotation)[0]

    if isinstance(default, FieldInfo):
        default.annotation, annotation_metadata = FieldInfo._extract_metadata(annotation)  # pyright: ignore[reportArgumentType]
        default.metadata += annotation_metadata
        default = default.merge_field_infos(
            *[x for x in annotation_metadata if isinstance(x, FieldInfo)], default, annotation=default.annotation
        )
        default.frozen = final or default.frozen
        return default

    if isinstance(default, dataclasses.Field):
        init_var = False
        if annotation is dataclasses.InitVar:
            init_var = True
            annotation = typing.cast(Any, Any)
        elif isinstance(annotation, dataclasses.InitVar):
            init_var = True
            annotation = annotation.type

        pydantic_field = FieldInfo._from_dataclass_field(default)
        pydantic_field.annotation, annotation_metadata = FieldInfo._extract_metadata(annotation)  # pyright: ignore[reportArgumentType]
        pydantic_field.metadata += annotation_metadata
        pydantic_field = pydantic_field.merge_field_infos(
            *[x for x in annotation_metadata if isinstance(x, FieldInfo)],
            pydantic_field,
            annotation=pydantic_field.annotation,
        )
        pydantic_field.frozen = final or pydantic_field.frozen
        pydantic_field.init_var = init_var
        pydantic_field.init = getattr(default, 'init', None)
        pydantic_field.kw_only = getattr(default, 'kw_only', None)
        return pydantic_field

    if _typing_extra.is_annotated(annotation):
        first_arg, *extra_args = typing_extensions.get_args(annotation)
        field_infos = [a for a in extra_args if isinstance(a, FieldInfo)]
        field_info = FieldInfo.merge_field_infos(*field_infos, annotation=first_arg, default=default)
        metadata: list[Any] = []
        for a in extra_args:
            if _typing_extra.is_deprecated_instance(a):
                field_info.deprecated = a.message
            elif not isinstance(a, FieldInfo):
                metadata.append(a)
            else:
                metadata.extend(a.metadata)
        field_info.metadata = metadata
        return field_info

    return FieldInfo(annotation=annotation, default=default, frozen=final or None)  # pyright: ignore[reportArgumentType]

merge_field_infos staticmethod

merge_field_infos(
    *field_infos: FieldInfo, **overrides: Any
) -> FieldInfo

Merge FieldInfo instances keeping only explicitly set attributes.

Later FieldInfo instances override earlier ones.

Returns:

Name Type Description
FieldInfo FieldInfo

A merged FieldInfo instance.

Source code in pydantic/fields.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
@staticmethod
def merge_field_infos(*field_infos: FieldInfo, **overrides: Any) -> FieldInfo:
    """Merge `FieldInfo` instances keeping only explicitly set attributes.

    Later `FieldInfo` instances override earlier ones.

    Returns:
        FieldInfo: A merged FieldInfo instance.
    """
    if len(field_infos) == 1:
        # No merging necessary, but we still need to make a copy and apply the overrides
        field_info = copy(field_infos[0])
        field_info._attributes_set.update(overrides)

        default_override = overrides.pop('default', PydanticUndefined)
        if default_override is Ellipsis:
            default_override = PydanticUndefined
        if default_override is not PydanticUndefined:
            field_info.default = default_override

        for k, v in overrides.items():
            setattr(field_info, k, v)
        return field_info  # type: ignore

    merged_field_info_kwargs: dict[str, Any] = {}
    metadata = {}
    for field_info in field_infos:
        attributes_set = field_info._attributes_set.copy()

        try:
            json_schema_extra = attributes_set.pop('json_schema_extra')
            existing_json_schema_extra = merged_field_info_kwargs.get('json_schema_extra')

            if existing_json_schema_extra is None:
                merged_field_info_kwargs['json_schema_extra'] = json_schema_extra
            if isinstance(existing_json_schema_extra, dict):
                if isinstance(json_schema_extra, dict):
                    merged_field_info_kwargs['json_schema_extra'] = {
                        **existing_json_schema_extra,
                        **json_schema_extra,
                    }
                if callable(json_schema_extra):
                    warn(
                        'Composing `dict` and `callable` type `json_schema_extra` is not supported.'
                        'The `callable` type is being ignored.'
                        "If you'd like support for this behavior, please open an issue on pydantic.",
                        PydanticJsonSchemaWarning,
                    )
            elif callable(json_schema_extra):
                # if ever there's a case of a callable, we'll just keep the last json schema extra spec
                merged_field_info_kwargs['json_schema_extra'] = json_schema_extra
        except KeyError:
            pass

        # later FieldInfo instances override everything except json_schema_extra from earlier FieldInfo instances
        merged_field_info_kwargs.update(attributes_set)

        for x in field_info.metadata:
            if not isinstance(x, FieldInfo):
                metadata[type(x)] = x

    merged_field_info_kwargs.update(overrides)
    field_info = FieldInfo(**merged_field_info_kwargs)
    field_info.metadata = list(metadata.values())
    return field_info

deprecation_message property

deprecation_message: str | None

The deprecation message to be emitted, or None if not set.

default_factory_takes_validated_data property

default_factory_takes_validated_data: bool | None

Whether the provided default factory callable has a validated data parameter.

Returns None if no default factory is set.

get_default

get_default(
    *,
    call_default_factory: bool = False,
    validated_data: dict[str, Any] | None = None
) -> Any

Get the default value.

We expose an option for whether to call the default_factory (if present), as calling it may result in side effects that we want to avoid. However, there are times when it really should be called (namely, when instantiating a model via model_construct).

Parameters:

Name Type Description Default
call_default_factory bool

Whether to call the default factory or not.

False
validated_data dict[str, Any] | None

The already validated data to be passed to the default factory.

None

Returns:

Type Description
Any

The default value, calling the default factory if requested or None if not set.

Source code in pydantic/fields.py
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
def get_default(self, *, call_default_factory: bool = False, validated_data: dict[str, Any] | None = None) -> Any:
    """Get the default value.

    We expose an option for whether to call the default_factory (if present), as calling it may
    result in side effects that we want to avoid. However, there are times when it really should
    be called (namely, when instantiating a model via `model_construct`).

    Args:
        call_default_factory: Whether to call the default factory or not.
        validated_data: The already validated data to be passed to the default factory.

    Returns:
        The default value, calling the default factory if requested or `None` if not set.
    """
    if self.default_factory is None:
        return _utils.smart_deepcopy(self.default)
    elif call_default_factory:
        if self.default_factory_takes_validated_data:
            fac = cast('Callable[[dict[str, Any]], Any]', self.default_factory)
            if validated_data is None:
                raise ValueError(
                    "The default factory requires the 'validated_data' argument, which was not provided when calling 'get_default'."
                )
            return fac(validated_data)
        else:
            fac = cast('Callable[[], Any]', self.default_factory)
            return fac()
    else:
        return None

is_required

is_required() -> bool

Check if the field is required (i.e., does not have a default value or factory).

Returns:

Type Description
bool

True if the field is required, False otherwise.

Source code in pydantic/fields.py
621
622
623
624
625
626
627
def is_required(self) -> bool:
    """Check if the field is required (i.e., does not have a default value or factory).

    Returns:
        `True` if the field is required, `False` otherwise.
    """
    return self.default is PydanticUndefined and self.default_factory is None

rebuild_annotation

rebuild_annotation() -> Any

Attempts to rebuild the original annotation for use in function signatures.

If metadata is present, it adds it to the original annotation using Annotated. Otherwise, it returns the original annotation as-is.

Note that because the metadata has been flattened, the original annotation may not be reconstructed exactly as originally provided, e.g. if the original type had unrecognized annotations, or was annotated with a call to pydantic.Field.

Returns:

Type Description
Any

The rebuilt annotation.

Source code in pydantic/fields.py
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
def rebuild_annotation(self) -> Any:
    """Attempts to rebuild the original annotation for use in function signatures.

    If metadata is present, it adds it to the original annotation using
    `Annotated`. Otherwise, it returns the original annotation as-is.

    Note that because the metadata has been flattened, the original annotation
    may not be reconstructed exactly as originally provided, e.g. if the original
    type had unrecognized annotations, or was annotated with a call to `pydantic.Field`.

    Returns:
        The rebuilt annotation.
    """
    if not self.metadata:
        return self.annotation
    else:
        # Annotated arguments must be a tuple
        return typing_extensions.Annotated[(self.annotation, *self.metadata)]  # type: ignore

apply_typevars_map

apply_typevars_map(
    typevars_map: dict[Any, Any] | None,
    globalns: GlobalsNamespace | None = None,
    localns: MappingNamespace | None = None,
) -> None

Apply a typevars_map to the annotation.

This method is used when analyzing parametrized generic types to replace typevars with their concrete types.

This method applies the typevars_map to the annotation in place.

Parameters:

Name Type Description Default
typevars_map dict[Any, Any] | None

A dictionary mapping type variables to their concrete types.

required
globalns GlobalsNamespace | None

The globals namespace to use during type annotation evaluation.

None
localns MappingNamespace | None

The locals namespace to use during type annotation evaluation.

None
See Also

pydantic._internal._generics.replace_types is used for replacing the typevars with their concrete types.

Source code in pydantic/fields.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def apply_typevars_map(
    self,
    typevars_map: dict[Any, Any] | None,
    globalns: GlobalsNamespace | None = None,
    localns: MappingNamespace | None = None,
) -> None:
    """Apply a `typevars_map` to the annotation.

    This method is used when analyzing parametrized generic types to replace typevars with their concrete types.

    This method applies the `typevars_map` to the annotation in place.

    Args:
        typevars_map: A dictionary mapping type variables to their concrete types.
        globalns: The globals namespace to use during type annotation evaluation.
        localns: The locals namespace to use during type annotation evaluation.

    See Also:
        pydantic._internal._generics.replace_types is used for replacing the typevars with
            their concrete types.
    """
    annotation, _ = _typing_extra.try_eval_type(self.annotation, globalns, localns)
    self.annotation = _generics.replace_types(annotation, typevars_map)

PrivateAttr

PrivateAttr(
    default: Any = PydanticUndefined,
    *,
    default_factory: Callable[[], Any] | None = None,
    init: Literal[False] = False
) -> Any

Usage Documentation

Private Model Attributes

Indicates that an attribute is intended for private use and not handled during normal validation/serialization.

Private attributes are not validated by Pydantic, so it's up to you to ensure they are used in a type-safe manner.

Private attributes are stored in __private_attributes__ on the model.

Parameters:

Name Type Description Default
default Any

The attribute's default value. Defaults to Undefined.

PydanticUndefined
default_factory Callable[[], Any] | None

Callable that will be called when a default value is needed for this attribute. If both default and default_factory are set, an error will be raised.

None
init Literal[False]

Whether the attribute should be included in the constructor of the dataclass. Always False.

False

Returns:

Type Description
Any

An instance of ModelPrivateAttr class.

Raises:

Type Description
ValueError

If both default and default_factory are set.

Source code in pydantic/fields.py
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
def PrivateAttr(
    default: Any = PydanticUndefined,
    *,
    default_factory: Callable[[], Any] | None = None,
    init: Literal[False] = False,
) -> Any:
    """!!! abstract "Usage Documentation"
        [Private Model Attributes](../concepts/models.md#private-model-attributes)

    Indicates that an attribute is intended for private use and not handled during normal validation/serialization.

    Private attributes are not validated by Pydantic, so it's up to you to ensure they are used in a type-safe manner.

    Private attributes are stored in `__private_attributes__` on the model.

    Args:
        default: The attribute's default value. Defaults to Undefined.
        default_factory: Callable that will be
            called when a default value is needed for this attribute.
            If both `default` and `default_factory` are set, an error will be raised.
        init: Whether the attribute should be included in the constructor of the dataclass. Always `False`.

    Returns:
        An instance of [`ModelPrivateAttr`][pydantic.fields.ModelPrivateAttr] class.

    Raises:
        ValueError: If both `default` and `default_factory` are set.
    """
    if default is not PydanticUndefined and default_factory is not None:
        raise TypeError('cannot specify both default and default_factory')

    return ModelPrivateAttr(
        default,
        default_factory=default_factory,
    )

ModelPrivateAttr

ModelPrivateAttr(
    default: Any = PydanticUndefined,
    *,
    default_factory: Callable[[], Any] | None = None
)

Bases: Representation

A descriptor for private attributes in class models.

Warning

You generally shouldn't be creating ModelPrivateAttr instances directly, instead use pydantic.fields.PrivateAttr. (This is similar to FieldInfo vs. Field.)

Attributes:

Name Type Description
default

The default value of the attribute if not provided.

default_factory

A callable function that generates the default value of the attribute if not provided.

Source code in pydantic/fields.py
1127
1128
1129
1130
1131
1132
1133
1134
def __init__(
    self, default: Any = PydanticUndefined, *, default_factory: typing.Callable[[], Any] | None = None
) -> None:
    if default is Ellipsis:
        self.default = PydanticUndefined
    else:
        self.default = default
    self.default_factory = default_factory

get_default

get_default() -> Any

Retrieve the default value of the object.

If self.default_factory is None, the method will return a deep copy of the self.default object.

If self.default_factory is not None, it will call self.default_factory and return the value returned.

Returns:

Type Description
Any

The default value of the object.

Source code in pydantic/fields.py
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
def get_default(self) -> Any:
    """Retrieve the default value of the object.

    If `self.default_factory` is `None`, the method will return a deep copy of the `self.default` object.

    If `self.default_factory` is not `None`, it will call `self.default_factory` and return the value returned.

    Returns:
        The default value of the object.
    """
    return _utils.smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()

computed_field

computed_field(
    func: PropertyT | None = None,
    /,
    *,
    alias: str | None = None,
    alias_priority: int | None = None,
    title: str | None = None,
    field_title_generator: (
        Callable[[str, ComputedFieldInfo], str] | None
    ) = None,
    description: str | None = None,
    deprecated: Deprecated | str | bool | None = None,
    examples: list[Any] | None = None,
    json_schema_extra: (
        JsonDict | Callable[[JsonDict], None] | None
    ) = None,
    repr: bool | None = None,
    return_type: Any = PydanticUndefined,
) -> PropertyT | Callable[[PropertyT], PropertyT]

Usage Documentation

The computed_field decorator

Decorator to include property and cached_property when serializing models or dataclasses.

This is useful for fields that are computed from other fields, or for fields that are expensive to compute and should be cached.

from pydantic import BaseModel, computed_field

class Rectangle(BaseModel):
    width: int
    length: int

    @computed_field
    @property
    def area(self) -> int:
        return self.width * self.length

print(Rectangle(width=3, length=2).model_dump())
#> {'width': 3, 'length': 2, 'area': 6}

If applied to functions not yet decorated with @property or @cached_property, the function is automatically wrapped with property. Although this is more concise, you will lose IntelliSense in your IDE, and confuse static type checkers, thus explicit use of @property is recommended.

Mypy Warning

Even with the @property or @cached_property applied to your function before @computed_field, mypy may throw a Decorated property not supported error. See mypy issue #1362, for more information. To avoid this error message, add # type: ignore[misc] to the @computed_field line.

pyright supports @computed_field without error.

import random

from pydantic import BaseModel, computed_field

class Square(BaseModel):
    width: float

    @computed_field
    def area(self) -> float:  # converted to a `property` by `computed_field`
        return round(self.width**2, 2)

    @area.setter
    def area(self, new_area: float) -> None:
        self.width = new_area**0.5

    @computed_field(alias='the magic number', repr=False)
    def random_number(self) -> int:
        return random.randint(0, 1_000)

square = Square(width=1.3)

# `random_number` does not appear in representation
print(repr(square))
#> Square(width=1.3, area=1.69)

print(square.random_number)
#> 3

square.area = 4

print(square.model_dump_json(by_alias=True))
#> {"width":2.0,"area":4.0,"the magic number":3}

Overriding with computed_field

You can't override a field from a parent class with a computed_field in the child class. mypy complains about this behavior if allowed, and dataclasses doesn't allow this pattern either. See the example below:

from pydantic import BaseModel, computed_field

class Parent(BaseModel):
    a: str

try:

    class Child(Parent):
        @computed_field
        @property
        def a(self) -> str:
            return 'new a'

except ValueError as e:
    print(repr(e))
    #> ValueError("you can't override a field with a computed field")

Private properties decorated with @computed_field have repr=False by default.

from functools import cached_property

from pydantic import BaseModel, computed_field

class Model(BaseModel):
    foo: int

    @computed_field
    @cached_property
    def _private_cached_property(self) -> int:
        return -self.foo

    @computed_field
    @property
    def _private_property(self) -> int:
        return -self.foo

m = Model(foo=1)
print(repr(m))
#> Model(foo=1)

Parameters:

Name Type Description Default
func PropertyT | None

the function to wrap.

None
alias str | None

alias to use when serializing this computed field, only used when by_alias=True

None
alias_priority int | None

priority of the alias. This affects whether an alias generator is used

None
title str | None

Title to use when including this computed field in JSON Schema

None
field_title_generator Callable[[str, ComputedFieldInfo], str] | None

A callable that takes a field name and returns title for it.

None
description str | None

Description to use when including this computed field in JSON Schema, defaults to the function's docstring

None
deprecated Deprecated | str | bool | None

A deprecation message (or an instance of warnings.deprecated or the typing_extensions.deprecated backport). to be emitted when accessing the field. Or a boolean. This will automatically be set if the property is decorated with the deprecated decorator.

None
examples list[Any] | None

Example values to use when including this computed field in JSON Schema

None
json_schema_extra JsonDict | Callable[[JsonDict], None] | None

A dict or callable to provide extra JSON schema properties.

None
repr bool | None

whether to include this computed field in model repr. Default is False for private properties and True for public properties.

None
return_type Any

optional return for serialization logic to expect when serializing to JSON, if included this must be correct, otherwise a TypeError is raised. If you don't include a return type Any is used, which does runtime introspection to handle arbitrary objects.

PydanticUndefined

Returns:

Type Description
PropertyT | Callable[[PropertyT], PropertyT]

A proxy wrapper for the property.

Source code in pydantic/fields.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
def computed_field(
    func: PropertyT | None = None,
    /,
    *,
    alias: str | None = None,
    alias_priority: int | None = None,
    title: str | None = None,
    field_title_generator: typing.Callable[[str, ComputedFieldInfo], str] | None = None,
    description: str | None = None,
    deprecated: Deprecated | str | bool | None = None,
    examples: list[Any] | None = None,
    json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None = None,
    repr: bool | None = None,
    return_type: Any = PydanticUndefined,
) -> PropertyT | typing.Callable[[PropertyT], PropertyT]:
    """!!! abstract "Usage Documentation"
        [The `computed_field` decorator](../concepts/fields.md#the-computed_field-decorator)

    Decorator to include `property` and `cached_property` when serializing models or dataclasses.

    This is useful for fields that are computed from other fields, or for fields that are expensive to compute and should be cached.

    ```python
    from pydantic import BaseModel, computed_field

    class Rectangle(BaseModel):
        width: int
        length: int

        @computed_field
        @property
        def area(self) -> int:
            return self.width * self.length

    print(Rectangle(width=3, length=2).model_dump())
    #> {'width': 3, 'length': 2, 'area': 6}
    ```

    If applied to functions not yet decorated with `@property` or `@cached_property`, the function is
    automatically wrapped with `property`. Although this is more concise, you will lose IntelliSense in your IDE,
    and confuse static type checkers, thus explicit use of `@property` is recommended.

    !!! warning "Mypy Warning"
        Even with the `@property` or `@cached_property` applied to your function before `@computed_field`,
        mypy may throw a `Decorated property not supported` error.
        See [mypy issue #1362](https://github.com/python/mypy/issues/1362), for more information.
        To avoid this error message, add `# type: ignore[misc]` to the `@computed_field` line.

        [pyright](https://github.com/microsoft/pyright) supports `@computed_field` without error.

    ```python
    import random

    from pydantic import BaseModel, computed_field

    class Square(BaseModel):
        width: float

        @computed_field
        def area(self) -> float:  # converted to a `property` by `computed_field`
            return round(self.width**2, 2)

        @area.setter
        def area(self, new_area: float) -> None:
            self.width = new_area**0.5

        @computed_field(alias='the magic number', repr=False)
        def random_number(self) -> int:
            return random.randint(0, 1_000)

    square = Square(width=1.3)

    # `random_number` does not appear in representation
    print(repr(square))
    #> Square(width=1.3, area=1.69)

    print(square.random_number)
    #> 3

    square.area = 4

    print(square.model_dump_json(by_alias=True))
    #> {"width":2.0,"area":4.0,"the magic number":3}
    ```

    !!! warning "Overriding with `computed_field`"
        You can't override a field from a parent class with a `computed_field` in the child class.
        `mypy` complains about this behavior if allowed, and `dataclasses` doesn't allow this pattern either.
        See the example below:

    ```python
    from pydantic import BaseModel, computed_field

    class Parent(BaseModel):
        a: str

    try:

        class Child(Parent):
            @computed_field
            @property
            def a(self) -> str:
                return 'new a'

    except ValueError as e:
        print(repr(e))
        #> ValueError("you can't override a field with a computed field")
    ```

    Private properties decorated with `@computed_field` have `repr=False` by default.

    ```python
    from functools import cached_property

    from pydantic import BaseModel, computed_field

    class Model(BaseModel):
        foo: int

        @computed_field
        @cached_property
        def _private_cached_property(self) -> int:
            return -self.foo

        @computed_field
        @property
        def _private_property(self) -> int:
            return -self.foo

    m = Model(foo=1)
    print(repr(m))
    #> Model(foo=1)
    ```

    Args:
        func: the function to wrap.
        alias: alias to use when serializing this computed field, only used when `by_alias=True`
        alias_priority: priority of the alias. This affects whether an alias generator is used
        title: Title to use when including this computed field in JSON Schema
        field_title_generator: A callable that takes a field name and returns title for it.
        description: Description to use when including this computed field in JSON Schema, defaults to the function's
            docstring
        deprecated: A deprecation message (or an instance of `warnings.deprecated` or the `typing_extensions.deprecated` backport).
            to be emitted when accessing the field. Or a boolean. This will automatically be set if the property is decorated with the
            `deprecated` decorator.
        examples: Example values to use when including this computed field in JSON Schema
        json_schema_extra: A dict or callable to provide extra JSON schema properties.
        repr: whether to include this computed field in model repr.
            Default is `False` for private properties and `True` for public properties.
        return_type: optional return for serialization logic to expect when serializing to JSON, if included
            this must be correct, otherwise a `TypeError` is raised.
            If you don't include a return type Any is used, which does runtime introspection to handle arbitrary
            objects.

    Returns:
        A proxy wrapper for the property.
    """

    def dec(f: Any) -> Any:
        nonlocal description, deprecated, return_type, alias_priority
        unwrapped = _decorators.unwrap_wrapped_function(f)

        if description is None and unwrapped.__doc__:
            description = inspect.cleandoc(unwrapped.__doc__)

        if deprecated is None and hasattr(unwrapped, '__deprecated__'):
            deprecated = unwrapped.__deprecated__

        # if the function isn't already decorated with `@property` (or another descriptor), then we wrap it now
        f = _decorators.ensure_property(f)
        alias_priority = (alias_priority or 2) if alias is not None else None

        if repr is None:
            repr_: bool = not _wrapped_property_is_private(property_=f)
        else:
            repr_ = repr

        dec_info = ComputedFieldInfo(
            f,
            return_type,
            alias,
            alias_priority,
            title,
            field_title_generator,
            description,
            deprecated,
            examples,
            json_schema_extra,
            repr_,
        )
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    if func is None:
        return dec
    else:
        return dec(func)

ComputedFieldInfo dataclass

ComputedFieldInfo(
    wrapped_property: property,
    return_type: Any,
    alias: str | None,
    alias_priority: int | None,
    title: str | None,
    field_title_generator: (
        Callable[[str, ComputedFieldInfo], str] | None
    ),
    description: str | None,
    deprecated: Deprecated | str | bool | None,
    examples: list[Any] | None,
    json_schema_extra: (
        JsonDict | Callable[[JsonDict], None] | None
    ),
    repr: bool,
)

A container for data from @computed_field so that we can access it while building the pydantic-core schema.

Attributes:

Name Type Description
decorator_repr str

A class variable representing the decorator string, '@computed_field'.

wrapped_property property

The wrapped computed field property.

return_type Any

The type of the computed field property's return value.

alias str | None

The alias of the property to be used during serialization.

alias_priority int | None

The priority of the alias. This affects whether an alias generator is used.

title str | None

Title of the computed field to include in the serialization JSON schema.

field_title_generator Callable[[str, ComputedFieldInfo], str] | None

A callable that takes a field name and returns title for it.

description str | None

Description of the computed field to include in the serialization JSON schema.

deprecated Deprecated | str | bool | None

A deprecation message, an instance of warnings.deprecated or the typing_extensions.deprecated backport, or a boolean. If True, a default deprecation message will be emitted when accessing the field.

examples list[Any] | None

Example values of the computed field to include in the serialization JSON schema.

json_schema_extra JsonDict | Callable[[JsonDict], None] | None

A dict or callable to provide extra JSON schema properties.

repr bool

A boolean indicating whether to include the field in the repr output.

deprecation_message property

deprecation_message: str | None

The deprecation message to be emitted, or None if not set.