Skip to content

BaseModel

Pydantic models are simply classes which inherit from BaseModel and define fields as annotated attributes.

pydantic.BaseModel

Usage Documentation

Models

A base class for creating Pydantic models.

Attributes:

Name Type Description
__class_vars__ set[str]

The names of the class variables defined on the model.

__private_attributes__ Dict[str, ModelPrivateAttr]

Metadata about the private attributes of the model.

__signature__ Signature

The synthesized __init__ Signature of the model.

__pydantic_complete__ bool

Whether model building is completed, or if there are still undefined fields.

__pydantic_core_schema__ CoreSchema

The core schema of the model.

__pydantic_custom_init__ bool

Whether the model has a custom __init__ function.

__pydantic_decorators__ DecoratorInfos

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_generic_metadata__ PydanticGenericMetadata

Metadata for generic models; contains data used for a similar purpose to args, origin, parameters in typing-module generics. May eventually be replaced by these.

__pydantic_parent_namespace__ Dict[str, Any] | None

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__ None | Literal['model_post_init']

The name of the post-init method for the model, if defined.

__pydantic_root_model__ bool

Whether the model is a RootModel.

__pydantic_serializer__ SchemaSerializer

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__ SchemaValidator | PluggableSchemaValidator

The pydantic-core SchemaValidator used to validate instances of the model.

__pydantic_fields__ Dict[str, FieldInfo]

A dictionary of field names and their corresponding FieldInfo objects.

__pydantic_computed_fields__ Dict[str, ComputedFieldInfo]

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

__pydantic_extra__ dict[str, Any] | None

A dictionary containing extra values, if extra is set to 'allow'.

__pydantic_fields_set__ set[str]

The names of fields explicitly set during instantiation.

__pydantic_private__ dict[str, Any] | None

Values of private attributes set on the model instance.

Source code in pydantic/main.py
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
class BaseModel(metaclass=_model_construction.ModelMetaclass):
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/models/

    A base class for creating Pydantic models.

    Attributes:
        __class_vars__: The names of the class variables defined on the model.
        __private_attributes__: Metadata about the private attributes of the model.
        __signature__: The synthesized `__init__` [`Signature`][inspect.Signature] of the model.

        __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
        __pydantic_core_schema__: The core schema of the model.
        __pydantic_custom_init__: Whether the model has a custom `__init__` function.
        __pydantic_decorators__: Metadata containing the decorators defined on the model.
            This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.
        __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to
            __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
        __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
        __pydantic_post_init__: The name of the post-init method for the model, if defined.
        __pydantic_root_model__: Whether the model is a [`RootModel`][pydantic.root_model.RootModel].
        __pydantic_serializer__: The `pydantic-core` `SchemaSerializer` used to dump instances of the model.
        __pydantic_validator__: The `pydantic-core` `SchemaValidator` used to validate instances of the model.

        __pydantic_fields__: A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects.
        __pydantic_computed_fields__: A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects.

        __pydantic_extra__: A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra]
            is set to `'allow'`.
        __pydantic_fields_set__: The names of fields explicitly set during instantiation.
        __pydantic_private__: Values of private attributes set on the model instance.
    """

    # Note: Many of the below class vars are defined in the metaclass, but we define them here for type checking purposes.

    model_config: ClassVar[ConfigDict] = ConfigDict()
    """
    Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict].
    """

    # Because `dict` is in the local namespace of the `BaseModel` class, we use `Dict` for annotations.
    # TODO v3 fallback to `dict` when the deprecated `dict` method gets removed.
    __class_vars__: ClassVar[set[str]]
    """The names of the class variables defined on the model."""

    __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]]  # noqa: UP006
    """Metadata about the private attributes of the model."""

    __signature__: ClassVar[Signature]
    """The synthesized `__init__` [`Signature`][inspect.Signature] of the model."""

    __pydantic_complete__: ClassVar[bool] = False
    """Whether model building is completed, or if there are still undefined fields."""

    __pydantic_core_schema__: ClassVar[CoreSchema]
    """The core schema of the model."""

    __pydantic_custom_init__: ClassVar[bool]
    """Whether the model has a custom `__init__` method."""

    # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation.
    __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = _decorators.DecoratorInfos()
    """Metadata containing the decorators defined on the model.
    This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1."""

    __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata]
    """Metadata for generic models; contains data used for a similar purpose to
    __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these."""

    __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None  # noqa: UP006
    """Parent namespace of the model, used for automatic rebuilding of models."""

    __pydantic_post_init__: ClassVar[None | Literal['model_post_init']]
    """The name of the post-init method for the model, if defined."""

    __pydantic_root_model__: ClassVar[bool] = False
    """Whether the model is a [`RootModel`][pydantic.root_model.RootModel]."""

    __pydantic_serializer__: ClassVar[SchemaSerializer]
    """The `pydantic-core` `SchemaSerializer` used to dump instances of the model."""

    __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator]
    """The `pydantic-core` `SchemaValidator` used to validate instances of the model."""

    __pydantic_fields__: ClassVar[Dict[str, FieldInfo]]  # noqa: UP006
    """A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects.
    This replaces `Model.__fields__` from Pydantic V1.
    """

    __pydantic_setattr_handlers__: ClassVar[Dict[str, Callable[[BaseModel, str, Any], None]]]  # noqa: UP006
    """`__setattr__` handlers. Memoizing the handlers leads to a dramatic performance improvement in `__setattr__`"""

    __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]]  # noqa: UP006
    """A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects."""

    __pydantic_extra__: dict[str, Any] | None = _model_construction.NoInitField(init=False)
    """A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] is set to `'allow'`."""

    __pydantic_fields_set__: set[str] = _model_construction.NoInitField(init=False)
    """The names of fields explicitly set during instantiation."""

    __pydantic_private__: dict[str, Any] | None = _model_construction.NoInitField(init=False)
    """Values of private attributes set on the model instance."""

    if not TYPE_CHECKING:
        # Prevent `BaseModel` from being instantiated directly
        # (defined in an `if not TYPE_CHECKING` block for clarity and to avoid type checking errors):
        __pydantic_core_schema__ = _mock_val_ser.MockCoreSchema(
            'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
            code='base-model-instantiated',
        )
        __pydantic_validator__ = _mock_val_ser.MockValSer(
            'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
            val_or_ser='validator',
            code='base-model-instantiated',
        )
        __pydantic_serializer__ = _mock_val_ser.MockValSer(
            'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
            val_or_ser='serializer',
            code='base-model-instantiated',
        )

    __slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__'

    def __init__(self, /, **data: Any) -> None:
        """Create a new model by parsing and validating input data from keyword arguments.

        Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be
        validated to form a valid model.

        `self` is explicitly positional-only to allow `self` as a field name.
        """
        # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
        __tracebackhide__ = True
        validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
        if self is not validated_self:
            warnings.warn(
                'A custom validator is returning a value other than `self`.\n'
                "Returning anything other than `self` from a top level model validator isn't supported when validating via `__init__`.\n"
                'See the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.',
                stacklevel=2,
            )

    # The following line sets a flag that we use to determine when `__init__` gets overridden by the user
    __init__.__pydantic_base_init__ = True  # pyright: ignore[reportFunctionMemberAccess]

    # TODO: V3 - remove `model_fields` and `model_computed_fields` properties from the `BaseModel` class - they should only
    # be accessible on the model class, not on instances. We have these purely for backwards compatibility with Pydantic <v2.10.
    # This is similar to the fact that we have __fields__ defined here (on `BaseModel`) and on `ModelMetaClass`.
    @property
    def model_fields(self) -> dict[str, FieldInfo]:
        """Get metadata about the fields defined on the model.

        Deprecation warning: you should be getting this information from the model class, not from an instance.
        In V3, this property will be removed from the `BaseModel` class.

        Returns:
            A mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo] objects.
        """
        # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation, hence the default here.
        return getattr(self, '__pydantic_fields__', {})

    @property
    def model_computed_fields(self) -> dict[str, ComputedFieldInfo]:
        """Get metadata about the computed fields defined on the model.

        Deprecation warning: you should be getting this information from the model class, not from an instance.
        In V3, this property will be removed from the `BaseModel` class.

        Returns:
            A mapping of computed field names to [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects.
        """
        # Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation, hence the default here.
        return getattr(self, '__pydantic_computed_fields__', {})

    @property
    def model_extra(self) -> dict[str, Any] | None:
        """Get extra fields set during validation.

        Returns:
            A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`.
        """
        return self.__pydantic_extra__

    @property
    def model_fields_set(self) -> set[str]:
        """Returns the set of fields that have been explicitly set on this model instance.

        Returns:
            A set of strings representing the fields that have been set,
                i.e. that were not filled from defaults.
        """
        return self.__pydantic_fields_set__

    @classmethod
    def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self:  # noqa: C901
        """Creates a new instance of the `Model` class with validated data.

        Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
        Default values are respected, but no other validation is performed.

        !!! note
            `model_construct()` generally respects the `model_config.extra` setting on the provided model.
            That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__`
            and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored.
            Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in
            an error if extra values are passed, but they will be ignored.

        Args:
            _fields_set: A set of field names that were originally explicitly set during instantiation. If provided,
                this is directly used for the [`model_fields_set`][pydantic.BaseModel.model_fields_set] attribute.
                Otherwise, the field names from the `values` argument will be used.
            values: Trusted or pre-validated data dictionary.

        Returns:
            A new instance of the `Model` class with validated data.
        """
        m = cls.__new__(cls)
        fields_values: dict[str, Any] = {}
        fields_set = set()

        for name, field in cls.__pydantic_fields__.items():
            if field.alias is not None and field.alias in values:
                fields_values[name] = values.pop(field.alias)
                fields_set.add(name)

            if (name not in fields_set) and (field.validation_alias is not None):
                validation_aliases: list[str | AliasPath] = (
                    field.validation_alias.choices
                    if isinstance(field.validation_alias, AliasChoices)
                    else [field.validation_alias]
                )

                for alias in validation_aliases:
                    if isinstance(alias, str) and alias in values:
                        fields_values[name] = values.pop(alias)
                        fields_set.add(name)
                        break
                    elif isinstance(alias, AliasPath):
                        value = alias.search_dict_for_path(values)
                        if value is not PydanticUndefined:
                            fields_values[name] = value
                            fields_set.add(name)
                            break

            if name not in fields_set:
                if name in values:
                    fields_values[name] = values.pop(name)
                    fields_set.add(name)
                elif not field.is_required():
                    fields_values[name] = field.get_default(call_default_factory=True, validated_data=fields_values)
        if _fields_set is None:
            _fields_set = fields_set

        _extra: dict[str, Any] | None = values if cls.model_config.get('extra') == 'allow' else None
        _object_setattr(m, '__dict__', fields_values)
        _object_setattr(m, '__pydantic_fields_set__', _fields_set)
        if not cls.__pydantic_root_model__:
            _object_setattr(m, '__pydantic_extra__', _extra)

        if cls.__pydantic_post_init__:
            m.model_post_init(None)
            # update private attributes with values set
            if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None:
                for k, v in values.items():
                    if k in m.__private_attributes__:
                        m.__pydantic_private__[k] = v

        elif not cls.__pydantic_root_model__:
            # Note: if there are any private attributes, cls.__pydantic_post_init__ would exist
            # Since it doesn't, that means that `__pydantic_private__` should be set to None
            _object_setattr(m, '__pydantic_private__', None)

        return m

    def model_copy(self, *, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self:
        """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

        Returns a copy of the model.

        Args:
            update: Values to change/add in the new model. Note: the data is not validated
                before creating the new model. You should trust this data.
            deep: Set to `True` to make a deep copy of the model.

        Returns:
            New model instance.
        """
        copied = self.__deepcopy__() if deep else self.__copy__()
        if update:
            if self.model_config.get('extra') == 'allow':
                for k, v in update.items():
                    if k in self.__pydantic_fields__:
                        copied.__dict__[k] = v
                    else:
                        if copied.__pydantic_extra__ is None:
                            copied.__pydantic_extra__ = {}
                        copied.__pydantic_extra__[k] = v
            else:
                copied.__dict__.update(update)
            copied.__pydantic_fields_set__.update(update.keys())
        return copied

    def model_dump(
        self,
        *,
        mode: Literal['json', 'python'] | str = 'python',
        include: IncEx | None = None,
        exclude: IncEx | None = None,
        context: Any | None = None,
        by_alias: bool = False,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        round_trip: bool = False,
        warnings: bool | Literal['none', 'warn', 'error'] = True,
        serialize_as_any: bool = False,
    ) -> dict[str, Any]:
        """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

        Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

        Args:
            mode: The mode in which `to_python` should run.
                If mode is 'json', the output will only contain JSON serializable types.
                If mode is 'python', the output may contain non-JSON-serializable Python objects.
            include: A set of fields to include in the output.
            exclude: A set of fields to exclude from the output.
            context: Additional context to pass to the serializer.
            by_alias: Whether to use the field's alias in the dictionary key if defined.
            exclude_unset: Whether to exclude fields that have not been explicitly set.
            exclude_defaults: Whether to exclude fields that are set to their default value.
            exclude_none: Whether to exclude fields that have a value of `None`.
            round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
            warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
                "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
            serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

        Returns:
            A dictionary representation of the model.
        """
        return self.__pydantic_serializer__.to_python(
            self,
            mode=mode,
            by_alias=by_alias,
            include=include,
            exclude=exclude,
            context=context,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
            round_trip=round_trip,
            warnings=warnings,
            serialize_as_any=serialize_as_any,
        )

    def model_dump_json(
        self,
        *,
        indent: int | None = None,
        include: IncEx | None = None,
        exclude: IncEx | None = None,
        context: Any | None = None,
        by_alias: bool = False,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        round_trip: bool = False,
        warnings: bool | Literal['none', 'warn', 'error'] = True,
        serialize_as_any: bool = False,
    ) -> str:
        """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

        Generates a JSON representation of the model using Pydantic's `to_json` method.

        Args:
            indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
            include: Field(s) to include in the JSON output.
            exclude: Field(s) to exclude from the JSON output.
            context: Additional context to pass to the serializer.
            by_alias: Whether to serialize using field aliases.
            exclude_unset: Whether to exclude fields that have not been explicitly set.
            exclude_defaults: Whether to exclude fields that are set to their default value.
            exclude_none: Whether to exclude fields that have a value of `None`.
            round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
            warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
                "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
            serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

        Returns:
            A JSON string representation of the model.
        """
        return self.__pydantic_serializer__.to_json(
            self,
            indent=indent,
            include=include,
            exclude=exclude,
            context=context,
            by_alias=by_alias,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
            round_trip=round_trip,
            warnings=warnings,
            serialize_as_any=serialize_as_any,
        ).decode()

    @classmethod
    def model_json_schema(
        cls,
        by_alias: bool = True,
        ref_template: str = DEFAULT_REF_TEMPLATE,
        schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
        mode: JsonSchemaMode = 'validation',
    ) -> dict[str, Any]:
        """Generates a JSON schema for a model class.

        Args:
            by_alias: Whether to use attribute aliases or not.
            ref_template: The reference template.
            schema_generator: To override the logic used to generate the JSON schema, as a subclass of
                `GenerateJsonSchema` with your desired modifications
            mode: The mode in which to generate the schema.

        Returns:
            The JSON schema for the given model class.
        """
        return model_json_schema(
            cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode
        )

    @classmethod
    def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str:
        """Compute the class name for parametrizations of generic classes.

        This method can be overridden to achieve a custom naming scheme for generic BaseModels.

        Args:
            params: Tuple of types of the class. Given a generic class
                `Model` with 2 type variables and a concrete model `Model[str, int]`,
                the value `(str, int)` would be passed to `params`.

        Returns:
            String representing the new class where `params` are passed to `cls` as type variables.

        Raises:
            TypeError: Raised when trying to generate concrete names for non-generic models.
        """
        if not issubclass(cls, typing.Generic):
            raise TypeError('Concrete names should only be generated for generic models.')

        # Any strings received should represent forward references, so we handle them specially below.
        # If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future,
        # we may be able to remove this special case.
        param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params]
        params_component = ', '.join(param_names)
        return f'{cls.__name__}[{params_component}]'

    def model_post_init(self, __context: Any) -> None:
        """Override this method to perform additional initialization after `__init__` and `model_construct`.
        This is useful if you want to do some validation that requires the entire model to be initialized.
        """
        pass

    @classmethod
    def model_rebuild(
        cls,
        *,
        force: bool = False,
        raise_errors: bool = True,
        _parent_namespace_depth: int = 2,
        _types_namespace: MappingNamespace | None = None,
    ) -> bool | None:
        """Try to rebuild the pydantic-core schema for the model.

        This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
        the initial attempt to build the schema, and automatic rebuilding fails.

        Args:
            force: Whether to force the rebuilding of the model schema, defaults to `False`.
            raise_errors: Whether to raise errors, defaults to `True`.
            _parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
            _types_namespace: The types namespace, defaults to `None`.

        Returns:
            Returns `None` if the schema is already "complete" and rebuilding was not required.
            If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
        """
        if not force and cls.__pydantic_complete__:
            return None

        if '__pydantic_core_schema__' in cls.__dict__:
            delattr(cls, '__pydantic_core_schema__')  # delete cached value to ensure full rebuild happens

        if _types_namespace is not None:
            rebuild_ns = _types_namespace
        elif _parent_namespace_depth > 0:
            rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
        else:
            rebuild_ns = {}

        parent_ns = _model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {}

        ns_resolver = _namespace_utils.NsResolver(
            parent_namespace={**rebuild_ns, **parent_ns},
        )

        # manually override defer_build so complete_model_class doesn't skip building the model again
        config = {**cls.model_config, 'defer_build': False}
        return _model_construction.complete_model_class(
            cls,
            _config.ConfigWrapper(config, check=False),
            raise_errors=raise_errors,
            ns_resolver=ns_resolver,
        )

    @classmethod
    def model_validate(
        cls,
        obj: Any,
        *,
        strict: bool | None = None,
        from_attributes: bool | None = None,
        context: Any | None = None,
    ) -> Self:
        """Validate a pydantic model instance.

        Args:
            obj: The object to validate.
            strict: Whether to enforce types strictly.
            from_attributes: Whether to extract data from object attributes.
            context: Additional context to pass to the validator.

        Raises:
            ValidationError: If the object could not be validated.

        Returns:
            The validated model instance.
        """
        # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
        __tracebackhide__ = True
        return cls.__pydantic_validator__.validate_python(
            obj, strict=strict, from_attributes=from_attributes, context=context
        )

    @classmethod
    def model_validate_json(
        cls,
        json_data: str | bytes | bytearray,
        *,
        strict: bool | None = None,
        context: Any | None = None,
    ) -> Self:
        """Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

        Validate the given JSON data against the Pydantic model.

        Args:
            json_data: The JSON data to validate.
            strict: Whether to enforce types strictly.
            context: Extra variables to pass to the validator.

        Returns:
            The validated Pydantic model.

        Raises:
            ValidationError: If `json_data` is not a JSON string or the object could not be validated.
        """
        # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
        __tracebackhide__ = True
        return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context)

    @classmethod
    def model_validate_strings(
        cls,
        obj: Any,
        *,
        strict: bool | None = None,
        context: Any | None = None,
    ) -> Self:
        """Validate the given object with string data against the Pydantic model.

        Args:
            obj: The object containing string data to validate.
            strict: Whether to enforce types strictly.
            context: Extra variables to pass to the validator.

        Returns:
            The validated Pydantic model.
        """
        # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
        __tracebackhide__ = True
        return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context)

    @classmethod
    def __get_pydantic_core_schema__(cls, source: type[BaseModel], handler: GetCoreSchemaHandler, /) -> CoreSchema:
        """Hook into generating the model's CoreSchema.

        Args:
            source: The class we are generating a schema for.
                This will generally be the same as the `cls` argument if this is a classmethod.
            handler: A callable that calls into Pydantic's internal CoreSchema generation logic.

        Returns:
            A `pydantic-core` `CoreSchema`.
        """
        # Only use the cached value from this _exact_ class; we don't want one from a parent class
        # This is why we check `cls.__dict__` and don't use `cls.__pydantic_core_schema__` or similar.
        schema = cls.__dict__.get('__pydantic_core_schema__')
        if schema is not None and not isinstance(schema, _mock_val_ser.MockCoreSchema):
            # Due to the way generic classes are built, it's possible that an invalid schema may be temporarily
            # set on generic classes. I think we could resolve this to ensure that we get proper schema caching
            # for generics, but for simplicity for now, we just always rebuild if the class has a generic origin.
            if not cls.__pydantic_generic_metadata__['origin']:
                return cls.__pydantic_core_schema__

        return handler(source)

    @classmethod
    def __get_pydantic_json_schema__(
        cls,
        core_schema: CoreSchema,
        handler: GetJsonSchemaHandler,
        /,
    ) -> JsonSchemaValue:
        """Hook into generating the model's JSON schema.

        Args:
            core_schema: A `pydantic-core` CoreSchema.
                You can ignore this argument and call the handler with a new CoreSchema,
                wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`),
                or just call the handler with the original schema.
            handler: Call into Pydantic's internal JSON schema generation.
                This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema
                generation fails.
                Since this gets called by `BaseModel.model_json_schema` you can override the
                `schema_generator` argument to that function to change JSON schema generation globally
                for a type.

        Returns:
            A JSON schema, as a Python object.
        """
        return handler(core_schema)

    @classmethod
    def __pydantic_init_subclass__(cls, **kwargs: Any) -> None:
        """This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass`
        only after the class is actually fully initialized. In particular, attributes like `model_fields` will
        be present when this is called.

        This is necessary because `__init_subclass__` will always be called by `type.__new__`,
        and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that
        `type.__new__` was called in such a manner that the class would already be sufficiently initialized.

        This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely,
        any kwargs passed to the class definition that aren't used internally by pydantic.

        Args:
            **kwargs: Any keyword arguments passed to the class definition that aren't used internally
                by pydantic.
        """
        pass

    def __class_getitem__(
        cls, typevar_values: type[Any] | tuple[type[Any], ...]
    ) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef:
        cached = _generics.get_cached_generic_type_early(cls, typevar_values)
        if cached is not None:
            return cached

        if cls is BaseModel:
            raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel')
        if not hasattr(cls, '__parameters__'):
            raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic')
        if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__:
            raise TypeError(f'{cls} is not a generic class')

        if not isinstance(typevar_values, tuple):
            typevar_values = (typevar_values,)
        _generics.check_parameters_count(cls, typevar_values)

        # Build map from generic typevars to passed params
        typevars_map: dict[TypeVar, type[Any]] = dict(
            zip(cls.__pydantic_generic_metadata__['parameters'], typevar_values)
        )

        if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map:
            submodel = cls  # if arguments are equal to parameters it's the same object
            _generics.set_cached_generic_type(cls, typevar_values, submodel)
        else:
            parent_args = cls.__pydantic_generic_metadata__['args']
            if not parent_args:
                args = typevar_values
            else:
                args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args)

            origin = cls.__pydantic_generic_metadata__['origin'] or cls
            model_name = origin.model_parametrized_name(args)
            params = tuple(
                {param: None for param in _generics.iter_contained_typevars(typevars_map.values())}
            )  # use dict as ordered set

            with _generics.generic_recursion_self_type(origin, args) as maybe_self_type:
                # Check cached first otherwise `mro` may return `PydanticRecursiveRef`
                cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args)
                if cached is not None:
                    return cached

                if maybe_self_type is not None:
                    return maybe_self_type

                # Attempt to rebuild the origin in case new types have been defined
                try:
                    # depth 2 gets you above this __class_getitem__ call.
                    # Note that we explicitly provide the parent ns, otherwise
                    # `model_rebuild` will use the parent ns no matter if it is the ns of a module.
                    # We don't want this here, as this has unexpected effects when a model
                    # is being parametrized during a forward annotation evaluation.
                    parent_ns = _typing_extra.parent_frame_namespace(parent_depth=2) or {}
                    origin.model_rebuild(_types_namespace=parent_ns)
                except PydanticUndefinedAnnotation:
                    # It's okay if it fails, it just means there are still undefined types
                    # that could be evaluated later.
                    pass

                submodel = _generics.create_generic_submodel(model_name, origin, args, params)

                # Update cache
                _generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args)

        return submodel

    def __copy__(self) -> Self:
        """Returns a shallow copy of the model."""
        cls = type(self)
        m = cls.__new__(cls)
        _object_setattr(m, '__dict__', copy(self.__dict__))
        _object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__))
        _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))

        if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
            _object_setattr(m, '__pydantic_private__', None)
        else:
            _object_setattr(
                m,
                '__pydantic_private__',
                {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined},
            )

        return m

    def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
        """Returns a deep copy of the model."""
        cls = type(self)
        m = cls.__new__(cls)
        _object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo))
        _object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo))
        # This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str],
        # and attempting a deepcopy would be marginally slower.
        _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))

        if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
            _object_setattr(m, '__pydantic_private__', None)
        else:
            _object_setattr(
                m,
                '__pydantic_private__',
                deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo),
            )

        return m

    def __replace__(self, **changes: Any) -> Self:
        """Creates a new instance of the model, replacing fields with values from changes. Relevant for v3.13+."""
        return self.model_copy(update=changes)

    if not TYPE_CHECKING:
        # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
        # The same goes for __setattr__ and __delattr__, see: https://github.com/pydantic/pydantic/issues/8643

        def __getattr__(self, item: str) -> Any:
            private_attributes = object.__getattribute__(self, '__private_attributes__')
            if item in private_attributes:
                attribute = private_attributes[item]
                if hasattr(attribute, '__get__'):
                    return attribute.__get__(self, type(self))  # type: ignore

                try:
                    # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
                    return self.__pydantic_private__[item]  # type: ignore
                except KeyError as exc:
                    raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
            else:
                # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
                # See `BaseModel.__repr_args__` for more details
                try:
                    pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
                except AttributeError:
                    pydantic_extra = None

                if pydantic_extra:
                    try:
                        return pydantic_extra[item]
                    except KeyError as exc:
                        raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
                else:
                    if hasattr(self.__class__, item):
                        return super().__getattribute__(item)  # Raises AttributeError if appropriate
                    else:
                        # this is the current error
                        raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')

        def __setattr__(self, name: str, value: Any) -> None:
            if (setattr_handler := self.__pydantic_setattr_handlers__.get(name)) is not None:
                setattr_handler(self, name, value)
            # if None is returned from _setattr_handler, the attribute was set directly
            elif (setattr_handler := self._setattr_handler(name, value)) is not None:
                setattr_handler(self, name, value)  # call here to not memo on possibly unknown fields
                self.__pydantic_setattr_handlers__[name] = setattr_handler  # memoize the handler for faster access

        def _setattr_handler(self, name: str, value: Any) -> Callable[[BaseModel, str, Any], None] | None:
            """Get a handler for setting an attribute on the model instance.

            Returns:
                A handler for setting an attribute on the model instance. Used for memoization of the handler.
                Memoizing the handlers leads to a dramatic performance improvement in `__setattr__`
                Returns `None` when memoization is not safe, then the attribute is set directly.
            """
            cls = self.__class__
            if name in cls.__class_vars__:
                raise AttributeError(
                    f'{name!r} is a ClassVar of `{cls.__name__}` and cannot be set on an instance. '
                    f'If you want to set a value on the class, use `{cls.__name__}.{name} = value`.'
                )
            elif not _fields.is_valid_field_name(name):
                if (attribute := cls.__private_attributes__.get(name)) is not None:
                    if hasattr(attribute, '__set__'):
                        return lambda model, _name, val: attribute.__set__(model, val)
                    else:
                        return _SIMPLE_SETATTR_HANDLERS['private']
                else:
                    _object_setattr(self, name, value)
                    return None  # Can not return memoized handler with possibly freeform attr names

            cls._check_frozen(name, value)

            attr = getattr(cls, name, None)
            # NOTE: We currently special case properties and `cached_property`, but we might need
            # to generalize this to all data/non-data descriptors at some point. For non-data descriptors
            # (such as `cached_property`), it isn't obvious though. `cached_property` caches the value
            # to the instance's `__dict__`, but other non-data descriptors might do things differently.
            if isinstance(attr, property):
                return lambda model, _name, val: attr.__set__(model, val)
            elif isinstance(attr, cached_property):
                return _SIMPLE_SETATTR_HANDLERS['cached_property']
            elif cls.model_config.get('validate_assignment'):
                return _SIMPLE_SETATTR_HANDLERS['validate_assignment']
            elif name not in cls.__pydantic_fields__:
                if cls.model_config.get('extra') != 'allow':
                    # TODO - matching error
                    raise ValueError(f'"{cls.__name__}" object has no field "{name}"')
                elif attr is None:
                    # attribute does not exist, so put it in extra
                    self.__pydantic_extra__[name] = value
                    return None  # Can not return memoized handler with possibly freeform attr names
                else:
                    # attribute _does_ exist, and was not in extra, so update it
                    return _SIMPLE_SETATTR_HANDLERS['extra_known']
            else:
                return _SIMPLE_SETATTR_HANDLERS['model_field']

        def __delattr__(self, item: str) -> Any:
            if item in self.__private_attributes__:
                attribute = self.__private_attributes__[item]
                if hasattr(attribute, '__delete__'):
                    attribute.__delete__(self)  # type: ignore
                    return

                try:
                    # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
                    del self.__pydantic_private__[item]  # type: ignore
                    return
                except KeyError as exc:
                    raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc

            self._check_frozen(item, None)

            if item in self.__pydantic_fields__:
                object.__delattr__(self, item)
            elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__:
                del self.__pydantic_extra__[item]
            else:
                try:
                    object.__delattr__(self, item)
                except AttributeError:
                    raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')

    @classmethod
    def _check_frozen(cls, name: str, value: Any) -> None:
        if cls.model_config.get('frozen', None):
            typ = 'frozen_instance'
        elif getattr(cls.__pydantic_fields__.get(name), 'frozen', False):
            typ = 'frozen_field'
        else:
            return
        error: pydantic_core.InitErrorDetails = {
            'type': typ,
            'loc': (name,),
            'input': value,
        }
        raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error])

    def __getstate__(self) -> dict[Any, Any]:
        private = self.__pydantic_private__
        if private:
            private = {k: v for k, v in private.items() if v is not PydanticUndefined}
        return {
            '__dict__': self.__dict__,
            '__pydantic_extra__': self.__pydantic_extra__,
            '__pydantic_fields_set__': self.__pydantic_fields_set__,
            '__pydantic_private__': private,
        }

    def __setstate__(self, state: dict[Any, Any]) -> None:
        _object_setattr(self, '__pydantic_fields_set__', state.get('__pydantic_fields_set__', {}))
        _object_setattr(self, '__pydantic_extra__', state.get('__pydantic_extra__', {}))
        _object_setattr(self, '__pydantic_private__', state.get('__pydantic_private__', {}))
        _object_setattr(self, '__dict__', state.get('__dict__', {}))

    if not TYPE_CHECKING:

        def __eq__(self, other: Any) -> bool:
            if isinstance(other, BaseModel):
                # When comparing instances of generic types for equality, as long as all field values are equal,
                # only require their generic origin types to be equal, rather than exact type equality.
                # This prevents headaches like MyGeneric(x=1) != MyGeneric[Any](x=1).
                self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__
                other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__

                # Perform common checks first
                if not (
                    self_type == other_type
                    and getattr(self, '__pydantic_private__', None) == getattr(other, '__pydantic_private__', None)
                    and self.__pydantic_extra__ == other.__pydantic_extra__
                ):
                    return False

                # We only want to compare pydantic fields but ignoring fields is costly.
                # We'll perform a fast check first, and fallback only when needed
                # See GH-7444 and GH-7825 for rationale and a performance benchmark

                # First, do the fast (and sometimes faulty) __dict__ comparison
                if self.__dict__ == other.__dict__:
                    # If the check above passes, then pydantic fields are equal, we can return early
                    return True

                # We don't want to trigger unnecessary costly filtering of __dict__ on all unequal objects, so we return
                # early if there are no keys to ignore (we would just return False later on anyway)
                model_fields = type(self).__pydantic_fields__.keys()
                if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields:
                    return False

                # If we reach here, there are non-pydantic-fields keys, mapped to unequal values, that we need to ignore
                # Resort to costly filtering of the __dict__ objects
                # We use operator.itemgetter because it is much faster than dict comprehensions
                # NOTE: Contrary to standard python class and instances, when the Model class has a default value for an
                # attribute and the model instance doesn't have a corresponding attribute, accessing the missing attribute
                # raises an error in BaseModel.__getattr__ instead of returning the class attribute
                # So we can use operator.itemgetter() instead of operator.attrgetter()
                getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL
                try:
                    return getter(self.__dict__) == getter(other.__dict__)
                except KeyError:
                    # In rare cases (such as when using the deprecated BaseModel.copy() method),
                    # the __dict__ may not contain all model fields, which is how we can get here.
                    # getter(self.__dict__) is much faster than any 'safe' method that accounts
                    # for missing keys, and wrapping it in a `try` doesn't slow things down much
                    # in the common case.
                    self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__)
                    other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__)
                    return getter(self_fields_proxy) == getter(other_fields_proxy)

            # other instance is not a BaseModel
            else:
                return NotImplemented  # delegate to the other item in the comparison

    if TYPE_CHECKING:
        # We put `__init_subclass__` in a TYPE_CHECKING block because, even though we want the type-checking benefits
        # described in the signature of `__init_subclass__` below, we don't want to modify the default behavior of
        # subclass initialization.

        def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]):
            """This signature is included purely to help type-checkers check arguments to class declaration, which
            provides a way to conveniently set model_config key/value pairs.

            ```python
            from pydantic import BaseModel

            class MyModel(BaseModel, extra='allow'): ...
            ```

            However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any
            of the config arguments, and will only receive any keyword arguments passed during class initialization
            that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.)

            Args:
                **kwargs: Keyword arguments passed to the class definition, which set model_config

            Note:
                You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called
                *after* the class is fully initialized.
            """

    def __iter__(self) -> TupleGenerator:
        """So `dict(model)` works."""
        yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')]
        extra = self.__pydantic_extra__
        if extra:
            yield from extra.items()

    def __repr__(self) -> str:
        return f'{self.__repr_name__()}({self.__repr_str__(", ")})'

    def __repr_args__(self) -> _repr.ReprArgs:
        for k, v in self.__dict__.items():
            field = self.__pydantic_fields__.get(k)
            if field and field.repr:
                if v is not self:
                    yield k, v
                else:
                    yield k, self.__repr_recursion__(v)
        # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
        # This can happen if a `ValidationError` is raised during initialization and the instance's
        # repr is generated as part of the exception handling. Therefore, we use `getattr` here
        # with a fallback, even though the type hints indicate the attribute will always be present.
        try:
            pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
        except AttributeError:
            pydantic_extra = None

        if pydantic_extra is not None:
            yield from ((k, v) for k, v in pydantic_extra.items())
        yield from ((k, getattr(self, k)) for k, v in self.__pydantic_computed_fields__.items() if v.repr)

    # take logic from `_repr.Representation` without the side effects of inheritance, see #5740
    __repr_name__ = _repr.Representation.__repr_name__
    __repr_recursion__ = _repr.Representation.__repr_recursion__
    __repr_str__ = _repr.Representation.__repr_str__
    __pretty__ = _repr.Representation.__pretty__
    __rich_repr__ = _repr.Representation.__rich_repr__

    def __str__(self) -> str:
        return self.__repr_str__(' ')

    # ##### Deprecated methods from v1 #####
    @property
    @typing_extensions.deprecated(
        'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None
    )
    def __fields__(self) -> dict[str, FieldInfo]:
        warnings.warn(
            'The `__fields__` attribute is deprecated, use `model_fields` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return self.model_fields

    @property
    @typing_extensions.deprecated(
        'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
        category=None,
    )
    def __fields_set__(self) -> set[str]:
        warnings.warn(
            'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return self.__pydantic_fields_set__

    @typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None)
    def dict(  # noqa: D102
        self,
        *,
        include: IncEx | None = None,
        exclude: IncEx | None = None,
        by_alias: bool = False,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
    ) -> Dict[str, Any]:  # noqa UP006
        warnings.warn(
            'The `dict` method is deprecated; use `model_dump` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return self.model_dump(
            include=include,
            exclude=exclude,
            by_alias=by_alias,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
        )

    @typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None)
    def json(  # noqa: D102
        self,
        *,
        include: IncEx | None = None,
        exclude: IncEx | None = None,
        by_alias: bool = False,
        exclude_unset: bool = False,
        exclude_defaults: bool = False,
        exclude_none: bool = False,
        encoder: Callable[[Any], Any] | None = PydanticUndefined,  # type: ignore[assignment]
        models_as_dict: bool = PydanticUndefined,  # type: ignore[assignment]
        **dumps_kwargs: Any,
    ) -> str:
        warnings.warn(
            'The `json` method is deprecated; use `model_dump_json` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        if encoder is not PydanticUndefined:
            raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.')
        if models_as_dict is not PydanticUndefined:
            raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.')
        if dumps_kwargs:
            raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.')
        return self.model_dump_json(
            include=include,
            exclude=exclude,
            by_alias=by_alias,
            exclude_unset=exclude_unset,
            exclude_defaults=exclude_defaults,
            exclude_none=exclude_none,
        )

    @classmethod
    @typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None)
    def parse_obj(cls, obj: Any) -> Self:  # noqa: D102
        warnings.warn(
            'The `parse_obj` method is deprecated; use `model_validate` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return cls.model_validate(obj)

    @classmethod
    @typing_extensions.deprecated(
        'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
        'otherwise load the data then use `model_validate` instead.',
        category=None,
    )
    def parse_raw(  # noqa: D102
        cls,
        b: str | bytes,
        *,
        content_type: str | None = None,
        encoding: str = 'utf8',
        proto: DeprecatedParseProtocol | None = None,
        allow_pickle: bool = False,
    ) -> Self:  # pragma: no cover
        warnings.warn(
            'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
            'otherwise load the data then use `model_validate` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import parse

        try:
            obj = parse.load_str_bytes(
                b,
                proto=proto,
                content_type=content_type,
                encoding=encoding,
                allow_pickle=allow_pickle,
            )
        except (ValueError, TypeError) as exc:
            import json

            # try to match V1
            if isinstance(exc, UnicodeDecodeError):
                type_str = 'value_error.unicodedecode'
            elif isinstance(exc, json.JSONDecodeError):
                type_str = 'value_error.jsondecode'
            elif isinstance(exc, ValueError):
                type_str = 'value_error'
            else:
                type_str = 'type_error'

            # ctx is missing here, but since we've added `input` to the error, we're not pretending it's the same
            error: pydantic_core.InitErrorDetails = {
                # The type: ignore on the next line is to ignore the requirement of LiteralString
                'type': pydantic_core.PydanticCustomError(type_str, str(exc)),  # type: ignore
                'loc': ('__root__',),
                'input': b,
            }
            raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error])
        return cls.model_validate(obj)

    @classmethod
    @typing_extensions.deprecated(
        'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
        'use `model_validate_json`, otherwise `model_validate` instead.',
        category=None,
    )
    def parse_file(  # noqa: D102
        cls,
        path: str | Path,
        *,
        content_type: str | None = None,
        encoding: str = 'utf8',
        proto: DeprecatedParseProtocol | None = None,
        allow_pickle: bool = False,
    ) -> Self:
        warnings.warn(
            'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
            'use `model_validate_json`, otherwise `model_validate` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import parse

        obj = parse.load_file(
            path,
            proto=proto,
            content_type=content_type,
            encoding=encoding,
            allow_pickle=allow_pickle,
        )
        return cls.parse_obj(obj)

    @classmethod
    @typing_extensions.deprecated(
        'The `from_orm` method is deprecated; set '
        "`model_config['from_attributes']=True` and use `model_validate` instead.",
        category=None,
    )
    def from_orm(cls, obj: Any) -> Self:  # noqa: D102
        warnings.warn(
            'The `from_orm` method is deprecated; set '
            "`model_config['from_attributes']=True` and use `model_validate` instead.",
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        if not cls.model_config.get('from_attributes', None):
            raise PydanticUserError(
                'You must set the config attribute `from_attributes=True` to use from_orm', code=None
            )
        return cls.model_validate(obj)

    @classmethod
    @typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None)
    def construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self:  # noqa: D102
        warnings.warn(
            'The `construct` method is deprecated; use `model_construct` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return cls.model_construct(_fields_set=_fields_set, **values)

    @typing_extensions.deprecated(
        'The `copy` method is deprecated; use `model_copy` instead. '
        'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
        category=None,
    )
    def copy(
        self,
        *,
        include: AbstractSetIntStr | MappingIntStrAny | None = None,
        exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
        update: Dict[str, Any] | None = None,  # noqa UP006
        deep: bool = False,
    ) -> Self:  # pragma: no cover
        """Returns a copy of the model.

        !!! warning "Deprecated"
            This method is now deprecated; use `model_copy` instead.

        If you need `include` or `exclude`, use:

        ```python {test="skip" lint="skip"}
        data = self.model_dump(include=include, exclude=exclude, round_trip=True)
        data = {**data, **(update or {})}
        copied = self.model_validate(data)
        ```

        Args:
            include: Optional set or mapping specifying which fields to include in the copied model.
            exclude: Optional set or mapping specifying which fields to exclude in the copied model.
            update: Optional dictionary of field-value pairs to override field values in the copied model.
            deep: If True, the values of fields that are Pydantic models will be deep-copied.

        Returns:
            A copy of the model with included, excluded and updated fields as specified.
        """
        warnings.warn(
            'The `copy` method is deprecated; use `model_copy` instead. '
            'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import copy_internals

        values = dict(
            copy_internals._iter(
                self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False
            ),
            **(update or {}),
        )
        if self.__pydantic_private__ is None:
            private = None
        else:
            private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}

        if self.__pydantic_extra__ is None:
            extra: dict[str, Any] | None = None
        else:
            extra = self.__pydantic_extra__.copy()
            for k in list(self.__pydantic_extra__):
                if k not in values:  # k was in the exclude
                    extra.pop(k)
            for k in list(values):
                if k in self.__pydantic_extra__:  # k must have come from extra
                    extra[k] = values.pop(k)

        # new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg
        if update:
            fields_set = self.__pydantic_fields_set__ | update.keys()
        else:
            fields_set = set(self.__pydantic_fields_set__)

        # removing excluded fields from `__pydantic_fields_set__`
        if exclude:
            fields_set -= set(exclude)

        return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep)

    @classmethod
    @typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None)
    def schema(  # noqa: D102
        cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE
    ) -> Dict[str, Any]:  # noqa UP006
        warnings.warn(
            'The `schema` method is deprecated; use `model_json_schema` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template)

    @classmethod
    @typing_extensions.deprecated(
        'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
        category=None,
    )
    def schema_json(  # noqa: D102
        cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any
    ) -> str:  # pragma: no cover
        warnings.warn(
            'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        import json

        from .deprecated.json import pydantic_encoder

        return json.dumps(
            cls.model_json_schema(by_alias=by_alias, ref_template=ref_template),
            default=pydantic_encoder,
            **dumps_kwargs,
        )

    @classmethod
    @typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None)
    def validate(cls, value: Any) -> Self:  # noqa: D102
        warnings.warn(
            'The `validate` method is deprecated; use `model_validate` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        return cls.model_validate(value)

    @classmethod
    @typing_extensions.deprecated(
        'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
        category=None,
    )
    def update_forward_refs(cls, **localns: Any) -> None:  # noqa: D102
        warnings.warn(
            'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        if localns:  # pragma: no cover
            raise TypeError('`localns` arguments are not longer accepted.')
        cls.model_rebuild(force=True)

    @typing_extensions.deprecated(
        'The private method `_iter` will be removed and should no longer be used.', category=None
    )
    def _iter(self, *args: Any, **kwargs: Any) -> Any:
        warnings.warn(
            'The private method `_iter` will be removed and should no longer be used.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import copy_internals

        return copy_internals._iter(self, *args, **kwargs)

    @typing_extensions.deprecated(
        'The private method `_copy_and_set_values` will be removed and should no longer be used.',
        category=None,
    )
    def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any:
        warnings.warn(
            'The private method `_copy_and_set_values` will be removed and should no longer be used.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import copy_internals

        return copy_internals._copy_and_set_values(self, *args, **kwargs)

    @classmethod
    @typing_extensions.deprecated(
        'The private method `_get_value` will be removed and should no longer be used.',
        category=None,
    )
    def _get_value(cls, *args: Any, **kwargs: Any) -> Any:
        warnings.warn(
            'The private method `_get_value` will be removed and should no longer be used.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import copy_internals

        return copy_internals._get_value(cls, *args, **kwargs)

    @typing_extensions.deprecated(
        'The private method `_calculate_keys` will be removed and should no longer be used.',
        category=None,
    )
    def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any:
        warnings.warn(
            'The private method `_calculate_keys` will be removed and should no longer be used.',
            category=PydanticDeprecatedSince20,
            stacklevel=2,
        )
        from .deprecated import copy_internals

        return copy_internals._calculate_keys(self, *args, **kwargs)

__init__

__init__(**data: Any) -> None

Raises ValidationError if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Source code in pydantic/main.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def __init__(self, /, **data: Any) -> None:
    """Create a new model by parsing and validating input data from keyword arguments.

    Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be
    validated to form a valid model.

    `self` is explicitly positional-only to allow `self` as a field name.
    """
    # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
    __tracebackhide__ = True
    validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
    if self is not validated_self:
        warnings.warn(
            'A custom validator is returning a value other than `self`.\n'
            "Returning anything other than `self` from a top level model validator isn't supported when validating via `__init__`.\n"
            'See the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.',
            stacklevel=2,
        )

model_config class-attribute

model_config: ConfigDict = ConfigDict()

Configuration for the model, should be a dictionary conforming to ConfigDict.

model_computed_fields property

model_computed_fields: dict[str, ComputedFieldInfo]

Get metadata about the computed fields defined on the model.

Deprecation warning: you should be getting this information from the model class, not from an instance. In V3, this property will be removed from the BaseModel class.

Returns:

Type Description
dict[str, ComputedFieldInfo]

A mapping of computed field names to ComputedFieldInfo objects.

model_extra property

model_extra: dict[str, Any] | None

Get extra fields set during validation.

Returns:

Type Description
dict[str, Any] | None

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields property

model_fields: dict[str, FieldInfo]

Get metadata about the fields defined on the model.

Deprecation warning: you should be getting this information from the model class, not from an instance. In V3, this property will be removed from the BaseModel class.

Returns:

Type Description
dict[str, FieldInfo]

A mapping of field names to FieldInfo objects.

model_fields_set property

model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

Type Description
set[str]

A set of strings representing the fields that have been set, i.e. that were not filled from defaults.

__pydantic_core_schema__ class-attribute

__pydantic_core_schema__: CoreSchema

The core schema of the model.

model_construct classmethod

model_construct(
    _fields_set: set[str] | None = None, **values: Any
) -> Self

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

Note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance's __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:

Name Type Description Default
_fields_set set[str] | None

A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the model_fields_set attribute. Otherwise, the field names from the values argument will be used.

None
values Any

Trusted or pre-validated data dictionary.

{}

Returns:

Type Description
Self

A new instance of the Model class with validated data.

Source code in pydantic/main.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
@classmethod
def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self:  # noqa: C901
    """Creates a new instance of the `Model` class with validated data.

    Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
    Default values are respected, but no other validation is performed.

    !!! note
        `model_construct()` generally respects the `model_config.extra` setting on the provided model.
        That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__`
        and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored.
        Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in
        an error if extra values are passed, but they will be ignored.

    Args:
        _fields_set: A set of field names that were originally explicitly set during instantiation. If provided,
            this is directly used for the [`model_fields_set`][pydantic.BaseModel.model_fields_set] attribute.
            Otherwise, the field names from the `values` argument will be used.
        values: Trusted or pre-validated data dictionary.

    Returns:
        A new instance of the `Model` class with validated data.
    """
    m = cls.__new__(cls)
    fields_values: dict[str, Any] = {}
    fields_set = set()

    for name, field in cls.__pydantic_fields__.items():
        if field.alias is not None and field.alias in values:
            fields_values[name] = values.pop(field.alias)
            fields_set.add(name)

        if (name not in fields_set) and (field.validation_alias is not None):
            validation_aliases: list[str | AliasPath] = (
                field.validation_alias.choices
                if isinstance(field.validation_alias, AliasChoices)
                else [field.validation_alias]
            )

            for alias in validation_aliases:
                if isinstance(alias, str) and alias in values:
                    fields_values[name] = values.pop(alias)
                    fields_set.add(name)
                    break
                elif isinstance(alias, AliasPath):
                    value = alias.search_dict_for_path(values)
                    if value is not PydanticUndefined:
                        fields_values[name] = value
                        fields_set.add(name)
                        break

        if name not in fields_set:
            if name in values:
                fields_values[name] = values.pop(name)
                fields_set.add(name)
            elif not field.is_required():
                fields_values[name] = field.get_default(call_default_factory=True, validated_data=fields_values)
    if _fields_set is None:
        _fields_set = fields_set

    _extra: dict[str, Any] | None = values if cls.model_config.get('extra') == 'allow' else None
    _object_setattr(m, '__dict__', fields_values)
    _object_setattr(m, '__pydantic_fields_set__', _fields_set)
    if not cls.__pydantic_root_model__:
        _object_setattr(m, '__pydantic_extra__', _extra)

    if cls.__pydantic_post_init__:
        m.model_post_init(None)
        # update private attributes with values set
        if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None:
            for k, v in values.items():
                if k in m.__private_attributes__:
                    m.__pydantic_private__[k] = v

    elif not cls.__pydantic_root_model__:
        # Note: if there are any private attributes, cls.__pydantic_post_init__ would exist
        # Since it doesn't, that means that `__pydantic_private__` should be set to None
        _object_setattr(m, '__pydantic_private__', None)

    return m

model_copy

model_copy(
    *,
    update: Mapping[str, Any] | None = None,
    deep: bool = False
) -> Self

Usage Documentation

model_copy(...)

Returns a copy of the model.

Parameters:

Name Type Description Default
update Mapping[str, Any] | None

Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

None
deep bool

Set to True to make a deep copy of the model.

False

Returns:

Type Description
Self

New model instance.

Source code in pydantic/main.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def model_copy(self, *, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self:
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

    Returns a copy of the model.

    Args:
        update: Values to change/add in the new model. Note: the data is not validated
            before creating the new model. You should trust this data.
        deep: Set to `True` to make a deep copy of the model.

    Returns:
        New model instance.
    """
    copied = self.__deepcopy__() if deep else self.__copy__()
    if update:
        if self.model_config.get('extra') == 'allow':
            for k, v in update.items():
                if k in self.__pydantic_fields__:
                    copied.__dict__[k] = v
                else:
                    if copied.__pydantic_extra__ is None:
                        copied.__pydantic_extra__ = {}
                    copied.__pydantic_extra__[k] = v
        else:
            copied.__dict__.update(update)
        copied.__pydantic_fields_set__.update(update.keys())
    return copied

model_dump

model_dump(
    *,
    mode: Literal["json", "python"] | str = "python",
    include: IncEx | None = None,
    exclude: IncEx | None = None,
    context: Any | None = None,
    by_alias: bool = False,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    round_trip: bool = False,
    warnings: (
        bool | Literal["none", "warn", "error"]
    ) = True,
    serialize_as_any: bool = False
) -> dict[str, Any]

Usage Documentation

model.model_dump(...)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:

Name Type Description Default
mode Literal['json', 'python'] | str

The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects.

'python'
include IncEx | None

A set of fields to include in the output.

None
exclude IncEx | None

A set of fields to exclude from the output.

None
context Any | None

Additional context to pass to the serializer.

None
by_alias bool

Whether to use the field's alias in the dictionary key if defined.

False
exclude_unset bool

Whether to exclude fields that have not been explicitly set.

False
exclude_defaults bool

Whether to exclude fields that are set to their default value.

False
exclude_none bool

Whether to exclude fields that have a value of None.

False
round_trip bool

If True, dumped values should be valid as input for non-idempotent types such as Json[T].

False
warnings bool | Literal['none', 'warn', 'error']

How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError.

True
serialize_as_any bool

Whether to serialize fields with duck-typing serialization behavior.

False

Returns:

Type Description
dict[str, Any]

A dictionary representation of the model.

Source code in pydantic/main.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def model_dump(
    self,
    *,
    mode: Literal['json', 'python'] | str = 'python',
    include: IncEx | None = None,
    exclude: IncEx | None = None,
    context: Any | None = None,
    by_alias: bool = False,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    round_trip: bool = False,
    warnings: bool | Literal['none', 'warn', 'error'] = True,
    serialize_as_any: bool = False,
) -> dict[str, Any]:
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

    Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

    Args:
        mode: The mode in which `to_python` should run.
            If mode is 'json', the output will only contain JSON serializable types.
            If mode is 'python', the output may contain non-JSON-serializable Python objects.
        include: A set of fields to include in the output.
        exclude: A set of fields to exclude from the output.
        context: Additional context to pass to the serializer.
        by_alias: Whether to use the field's alias in the dictionary key if defined.
        exclude_unset: Whether to exclude fields that have not been explicitly set.
        exclude_defaults: Whether to exclude fields that are set to their default value.
        exclude_none: Whether to exclude fields that have a value of `None`.
        round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
        warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
            "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
        serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

    Returns:
        A dictionary representation of the model.
    """
    return self.__pydantic_serializer__.to_python(
        self,
        mode=mode,
        by_alias=by_alias,
        include=include,
        exclude=exclude,
        context=context,
        exclude_unset=exclude_unset,
        exclude_defaults=exclude_defaults,
        exclude_none=exclude_none,
        round_trip=round_trip,
        warnings=warnings,
        serialize_as_any=serialize_as_any,
    )

model_dump_json

model_dump_json(
    *,
    indent: int | None = None,
    include: IncEx | None = None,
    exclude: IncEx | None = None,
    context: Any | None = None,
    by_alias: bool = False,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    round_trip: bool = False,
    warnings: (
        bool | Literal["none", "warn", "error"]
    ) = True,
    serialize_as_any: bool = False
) -> str

Usage Documentation

model.model_dump_json(...)

Generates a JSON representation of the model using Pydantic's to_json method.

Parameters:

Name Type Description Default
indent int | None

Indentation to use in the JSON output. If None is passed, the output will be compact.

None
include IncEx | None

Field(s) to include in the JSON output.

None
exclude IncEx | None

Field(s) to exclude from the JSON output.

None
context Any | None

Additional context to pass to the serializer.

None
by_alias bool

Whether to serialize using field aliases.

False
exclude_unset bool

Whether to exclude fields that have not been explicitly set.

False
exclude_defaults bool

Whether to exclude fields that are set to their default value.

False
exclude_none bool

Whether to exclude fields that have a value of None.

False
round_trip bool

If True, dumped values should be valid as input for non-idempotent types such as Json[T].

False
warnings bool | Literal['none', 'warn', 'error']

How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError.

True
serialize_as_any bool

Whether to serialize fields with duck-typing serialization behavior.

False

Returns:

Type Description
str

A JSON string representation of the model.

Source code in pydantic/main.py
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def model_dump_json(
    self,
    *,
    indent: int | None = None,
    include: IncEx | None = None,
    exclude: IncEx | None = None,
    context: Any | None = None,
    by_alias: bool = False,
    exclude_unset: bool = False,
    exclude_defaults: bool = False,
    exclude_none: bool = False,
    round_trip: bool = False,
    warnings: bool | Literal['none', 'warn', 'error'] = True,
    serialize_as_any: bool = False,
) -> str:
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

    Generates a JSON representation of the model using Pydantic's `to_json` method.

    Args:
        indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
        include: Field(s) to include in the JSON output.
        exclude: Field(s) to exclude from the JSON output.
        context: Additional context to pass to the serializer.
        by_alias: Whether to serialize using field aliases.
        exclude_unset: Whether to exclude fields that have not been explicitly set.
        exclude_defaults: Whether to exclude fields that are set to their default value.
        exclude_none: Whether to exclude fields that have a value of `None`.
        round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
        warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
            "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
        serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

    Returns:
        A JSON string representation of the model.
    """
    return self.__pydantic_serializer__.to_json(
        self,
        indent=indent,
        include=include,
        exclude=exclude,
        context=context,
        by_alias=by_alias,
        exclude_unset=exclude_unset,
        exclude_defaults=exclude_defaults,
        exclude_none=exclude_none,
        round_trip=round_trip,
        warnings=warnings,
        serialize_as_any=serialize_as_any,
    ).decode()

model_json_schema classmethod

model_json_schema(
    by_alias: bool = True,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[
        GenerateJsonSchema
    ] = GenerateJsonSchema,
    mode: JsonSchemaMode = "validation",
) -> dict[str, Any]

Generates a JSON schema for a model class.

Parameters:

Name Type Description Default
by_alias bool

Whether to use attribute aliases or not.

True
ref_template str

The reference template.

DEFAULT_REF_TEMPLATE
schema_generator type[GenerateJsonSchema]

To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

GenerateJsonSchema
mode JsonSchemaMode

The mode in which to generate the schema.

'validation'

Returns:

Type Description
dict[str, Any]

The JSON schema for the given model class.

Source code in pydantic/main.py
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
@classmethod
def model_json_schema(
    cls,
    by_alias: bool = True,
    ref_template: str = DEFAULT_REF_TEMPLATE,
    schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
    mode: JsonSchemaMode = 'validation',
) -> dict[str, Any]:
    """Generates a JSON schema for a model class.

    Args:
        by_alias: Whether to use attribute aliases or not.
        ref_template: The reference template.
        schema_generator: To override the logic used to generate the JSON schema, as a subclass of
            `GenerateJsonSchema` with your desired modifications
        mode: The mode in which to generate the schema.

    Returns:
        The JSON schema for the given model class.
    """
    return model_json_schema(
        cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode
    )

model_parametrized_name classmethod

model_parametrized_name(
    params: tuple[type[Any], ...]
) -> str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

Name Type Description Default
params tuple[type[Any], ...]

Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

required

Returns:

Type Description
str

String representing the new class where params are passed to cls as type variables.

Raises:

Type Description
TypeError

Raised when trying to generate concrete names for non-generic models.

Source code in pydantic/main.py
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
@classmethod
def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str:
    """Compute the class name for parametrizations of generic classes.

    This method can be overridden to achieve a custom naming scheme for generic BaseModels.

    Args:
        params: Tuple of types of the class. Given a generic class
            `Model` with 2 type variables and a concrete model `Model[str, int]`,
            the value `(str, int)` would be passed to `params`.

    Returns:
        String representing the new class where `params` are passed to `cls` as type variables.

    Raises:
        TypeError: Raised when trying to generate concrete names for non-generic models.
    """
    if not issubclass(cls, typing.Generic):
        raise TypeError('Concrete names should only be generated for generic models.')

    # Any strings received should represent forward references, so we handle them specially below.
    # If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future,
    # we may be able to remove this special case.
    param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params]
    params_component = ', '.join(param_names)
    return f'{cls.__name__}[{params_component}]'

model_post_init

model_post_init(__context: Any) -> None

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Source code in pydantic/main.py
555
556
557
558
559
def model_post_init(self, __context: Any) -> None:
    """Override this method to perform additional initialization after `__init__` and `model_construct`.
    This is useful if you want to do some validation that requires the entire model to be initialized.
    """
    pass

model_rebuild classmethod

model_rebuild(
    *,
    force: bool = False,
    raise_errors: bool = True,
    _parent_namespace_depth: int = 2,
    _types_namespace: MappingNamespace | None = None
) -> bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:

Name Type Description Default
force bool

Whether to force the rebuilding of the model schema, defaults to False.

False
raise_errors bool

Whether to raise errors, defaults to True.

True
_parent_namespace_depth int

The depth level of the parent namespace, defaults to 2.

2
_types_namespace MappingNamespace | None

The types namespace, defaults to None.

None

Returns:

Type Description
bool | None

Returns None if the schema is already "complete" and rebuilding was not required.

bool | None

If rebuilding was required, returns True if rebuilding was successful, otherwise False.

Source code in pydantic/main.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
@classmethod
def model_rebuild(
    cls,
    *,
    force: bool = False,
    raise_errors: bool = True,
    _parent_namespace_depth: int = 2,
    _types_namespace: MappingNamespace | None = None,
) -> bool | None:
    """Try to rebuild the pydantic-core schema for the model.

    This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
    the initial attempt to build the schema, and automatic rebuilding fails.

    Args:
        force: Whether to force the rebuilding of the model schema, defaults to `False`.
        raise_errors: Whether to raise errors, defaults to `True`.
        _parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
        _types_namespace: The types namespace, defaults to `None`.

    Returns:
        Returns `None` if the schema is already "complete" and rebuilding was not required.
        If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
    """
    if not force and cls.__pydantic_complete__:
        return None

    if '__pydantic_core_schema__' in cls.__dict__:
        delattr(cls, '__pydantic_core_schema__')  # delete cached value to ensure full rebuild happens

    if _types_namespace is not None:
        rebuild_ns = _types_namespace
    elif _parent_namespace_depth > 0:
        rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
    else:
        rebuild_ns = {}

    parent_ns = _model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {}

    ns_resolver = _namespace_utils.NsResolver(
        parent_namespace={**rebuild_ns, **parent_ns},
    )

    # manually override defer_build so complete_model_class doesn't skip building the model again
    config = {**cls.model_config, 'defer_build': False}
    return _model_construction.complete_model_class(
        cls,
        _config.ConfigWrapper(config, check=False),
        raise_errors=raise_errors,
        ns_resolver=ns_resolver,
    )

model_validate classmethod

model_validate(
    obj: Any,
    *,
    strict: bool | None = None,
    from_attributes: bool | None = None,
    context: Any | None = None
) -> Self

Validate a pydantic model instance.

Parameters:

Name Type Description Default
obj Any

The object to validate.

required
strict bool | None

Whether to enforce types strictly.

None
from_attributes bool | None

Whether to extract data from object attributes.

None
context Any | None

Additional context to pass to the validator.

None

Raises:

Type Description
ValidationError

If the object could not be validated.

Returns:

Type Description
Self

The validated model instance.

Source code in pydantic/main.py
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
@classmethod
def model_validate(
    cls,
    obj: Any,
    *,
    strict: bool | None = None,
    from_attributes: bool | None = None,
    context: Any | None = None,
) -> Self:
    """Validate a pydantic model instance.

    Args:
        obj: The object to validate.
        strict: Whether to enforce types strictly.
        from_attributes: Whether to extract data from object attributes.
        context: Additional context to pass to the validator.

    Raises:
        ValidationError: If the object could not be validated.

    Returns:
        The validated model instance.
    """
    # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
    __tracebackhide__ = True
    return cls.__pydantic_validator__.validate_python(
        obj, strict=strict, from_attributes=from_attributes, context=context
    )

model_validate_json classmethod

model_validate_json(
    json_data: str | bytes | bytearray,
    *,
    strict: bool | None = None,
    context: Any | None = None
) -> Self

Usage Documentation

Json Parsing

Validate the given JSON data against the Pydantic model.

Parameters:

Name Type Description Default
json_data str | bytes | bytearray

The JSON data to validate.

required
strict bool | None

Whether to enforce types strictly.

None
context Any | None

Extra variables to pass to the validator.

None

Returns:

Type Description
Self

The validated Pydantic model.

Raises:

Type Description
ValidationError

If json_data is not a JSON string or the object could not be validated.

Source code in pydantic/main.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
@classmethod
def model_validate_json(
    cls,
    json_data: str | bytes | bytearray,
    *,
    strict: bool | None = None,
    context: Any | None = None,
) -> Self:
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

    Validate the given JSON data against the Pydantic model.

    Args:
        json_data: The JSON data to validate.
        strict: Whether to enforce types strictly.
        context: Extra variables to pass to the validator.

    Returns:
        The validated Pydantic model.

    Raises:
        ValidationError: If `json_data` is not a JSON string or the object could not be validated.
    """
    # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
    __tracebackhide__ = True
    return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context)

model_validate_strings classmethod

model_validate_strings(
    obj: Any,
    *,
    strict: bool | None = None,
    context: Any | None = None
) -> Self

Validate the given object with string data against the Pydantic model.

Parameters:

Name Type Description Default
obj Any

The object containing string data to validate.

required
strict bool | None

Whether to enforce types strictly.

None
context Any | None

Extra variables to pass to the validator.

None

Returns:

Type Description
Self

The validated Pydantic model.

Source code in pydantic/main.py
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
@classmethod
def model_validate_strings(
    cls,
    obj: Any,
    *,
    strict: bool | None = None,
    context: Any | None = None,
) -> Self:
    """Validate the given object with string data against the Pydantic model.

    Args:
        obj: The object containing string data to validate.
        strict: Whether to enforce types strictly.
        context: Extra variables to pass to the validator.

    Returns:
        The validated Pydantic model.
    """
    # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
    __tracebackhide__ = True
    return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context)

copy

copy(
    *,
    include: (
        AbstractSetIntStr | MappingIntStrAny | None
    ) = None,
    exclude: (
        AbstractSetIntStr | MappingIntStrAny | None
    ) = None,
    update: Dict[str, Any] | None = None,
    deep: bool = False
) -> Self

Returns a copy of the model.

Deprecated

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)

Parameters:

Name Type Description Default
include AbstractSetIntStr | MappingIntStrAny | None

Optional set or mapping specifying which fields to include in the copied model.

None
exclude AbstractSetIntStr | MappingIntStrAny | None

Optional set or mapping specifying which fields to exclude in the copied model.

None
update Dict[str, Any] | None

Optional dictionary of field-value pairs to override field values in the copied model.

None
deep bool

If True, the values of fields that are Pydantic models will be deep-copied.

False

Returns:

Type Description
Self

A copy of the model with included, excluded and updated fields as specified.

Source code in pydantic/main.py
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
@typing_extensions.deprecated(
    'The `copy` method is deprecated; use `model_copy` instead. '
    'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
    category=None,
)
def copy(
    self,
    *,
    include: AbstractSetIntStr | MappingIntStrAny | None = None,
    exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
    update: Dict[str, Any] | None = None,  # noqa UP006
    deep: bool = False,
) -> Self:  # pragma: no cover
    """Returns a copy of the model.

    !!! warning "Deprecated"
        This method is now deprecated; use `model_copy` instead.

    If you need `include` or `exclude`, use:

    ```python {test="skip" lint="skip"}
    data = self.model_dump(include=include, exclude=exclude, round_trip=True)
    data = {**data, **(update or {})}
    copied = self.model_validate(data)
    ```

    Args:
        include: Optional set or mapping specifying which fields to include in the copied model.
        exclude: Optional set or mapping specifying which fields to exclude in the copied model.
        update: Optional dictionary of field-value pairs to override field values in the copied model.
        deep: If True, the values of fields that are Pydantic models will be deep-copied.

    Returns:
        A copy of the model with included, excluded and updated fields as specified.
    """
    warnings.warn(
        'The `copy` method is deprecated; use `model_copy` instead. '
        'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
        category=PydanticDeprecatedSince20,
        stacklevel=2,
    )
    from .deprecated import copy_internals

    values = dict(
        copy_internals._iter(
            self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False
        ),
        **(update or {}),
    )
    if self.__pydantic_private__ is None:
        private = None
    else:
        private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}

    if self.__pydantic_extra__ is None:
        extra: dict[str, Any] | None = None
    else:
        extra = self.__pydantic_extra__.copy()
        for k in list(self.__pydantic_extra__):
            if k not in values:  # k was in the exclude
                extra.pop(k)
        for k in list(values):
            if k in self.__pydantic_extra__:  # k must have come from extra
                extra[k] = values.pop(k)

    # new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg
    if update:
        fields_set = self.__pydantic_fields_set__ | update.keys()
    else:
        fields_set = set(self.__pydantic_fields_set__)

    # removing excluded fields from `__pydantic_fields_set__`
    if exclude:
        fields_set -= set(exclude)

    return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep)

pydantic.create_model

create_model(
    model_name: str,
    /,
    *,
    __config__: ConfigDict | None = None,
    __doc__: str | None = None,
    __base__: (
        type[ModelT] | tuple[type[ModelT], ...] | None
    ) = None,
    __module__: str | None = None,
    __validators__: (
        dict[str, Callable[..., Any]] | None
    ) = None,
    __cls_kwargs__: dict[str, Any] | None = None,
    __slots__: tuple[str, ...] | None = None,
    **field_definitions: Any,
) -> type[ModelT]

Usage Documentation

Dynamic model creation

Dynamically creates and returns a new Pydantic model, in other words, create_model dynamically creates a subclass of BaseModel.

Parameters:

Name Type Description Default
model_name str

The name of the newly created model.

required
__config__ ConfigDict | None

The configuration of the new model.

None
__doc__ str | None

The docstring of the new model.

None
__base__ type[ModelT] | tuple[type[ModelT], ...] | None

The base class or classes for the new model.

None
__module__ str | None

The name of the module that the model belongs to; if None, the value is taken from sys._getframe(1)

None
__validators__ dict[str, Callable[..., Any]] | None

A dictionary of methods that validate fields. The keys are the names of the validation methods to be added to the model, and the values are the validation methods themselves. You can read more about functional validators here.

None
__cls_kwargs__ dict[str, Any] | None

A dictionary of keyword arguments for class creation, such as metaclass.

None
__slots__ tuple[str, ...] | None

Deprecated. Should not be passed to create_model.

None
**field_definitions Any

Attributes of the new model. They should be passed in the format: <name>=(<type>, <default value>), <name>=(<type>, <FieldInfo>), or typing.Annotated[<type>, <FieldInfo>]. Any additional metadata in typing.Annotated[<type>, <FieldInfo>, ...] will be ignored. Note, FieldInfo instances should be created via pydantic.Field(...). Initializing FieldInfo instances directly is not supported.

{}

Returns:

Type Description
type[ModelT]

The new model.

Raises:

Type Description
PydanticUserError

If __base__ and __config__ are both passed.

Source code in pydantic/main.py
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
def create_model(  # noqa: C901
    model_name: str,
    /,
    *,
    __config__: ConfigDict | None = None,
    __doc__: str | None = None,
    __base__: type[ModelT] | tuple[type[ModelT], ...] | None = None,
    __module__: str | None = None,
    __validators__: dict[str, Callable[..., Any]] | None = None,
    __cls_kwargs__: dict[str, Any] | None = None,
    __slots__: tuple[str, ...] | None = None,
    **field_definitions: Any,
) -> type[ModelT]:
    """Usage docs: https://docs.pydantic.dev/2.10/concepts/models/#dynamic-model-creation

    Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a
    subclass of [`BaseModel`][pydantic.BaseModel].

    Args:
        model_name: The name of the newly created model.
        __config__: The configuration of the new model.
        __doc__: The docstring of the new model.
        __base__: The base class or classes for the new model.
        __module__: The name of the module that the model belongs to;
            if `None`, the value is taken from `sys._getframe(1)`
        __validators__: A dictionary of methods that validate fields. The keys are the names of the validation methods to
            be added to the model, and the values are the validation methods themselves. You can read more about functional
            validators [here](https://docs.pydantic.dev/2.9/concepts/validators/#field-validators).
        __cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`.
        __slots__: Deprecated. Should not be passed to `create_model`.
        **field_definitions: Attributes of the new model. They should be passed in the format:
            `<name>=(<type>, <default value>)`, `<name>=(<type>, <FieldInfo>)`, or `typing.Annotated[<type>, <FieldInfo>]`.
            Any additional metadata in `typing.Annotated[<type>, <FieldInfo>, ...]` will be ignored.
            Note, `FieldInfo` instances should be created via `pydantic.Field(...)`.
            Initializing `FieldInfo` instances directly is not supported.

    Returns:
        The new [model][pydantic.BaseModel].

    Raises:
        PydanticUserError: If `__base__` and `__config__` are both passed.
    """
    if __slots__ is not None:
        # __slots__ will be ignored from here on
        warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)

    if __base__ is not None:
        if __config__ is not None:
            raise PydanticUserError(
                'to avoid confusion `__config__` and `__base__` cannot be used together',
                code='create-model-config-base',
            )
        if not isinstance(__base__, tuple):
            __base__ = (__base__,)
    else:
        __base__ = (cast('type[ModelT]', BaseModel),)

    __cls_kwargs__ = __cls_kwargs__ or {}

    fields = {}
    annotations = {}

    for f_name, f_def in field_definitions.items():
        if not _fields.is_valid_field_name(f_name):
            warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
        if isinstance(f_def, tuple):
            f_def = cast('tuple[str, Any]', f_def)
            try:
                f_annotation, f_value = f_def
            except ValueError as e:
                raise PydanticUserError(
                    'Field definitions should be a `(<type>, <default>)`.',
                    code='create-model-field-definitions',
                ) from e

        elif _typing_extra.is_annotated(f_def):
            (f_annotation, f_value, *_) = typing_extensions.get_args(
                f_def
            )  # first two input are expected from Annotated, refer to https://docs.python.org/3/library/typing.html#typing.Annotated
            FieldInfo = _import_utils.import_cached_field_info()

            if not isinstance(f_value, FieldInfo):
                raise PydanticUserError(
                    'Field definitions should be a Annotated[<type>, <FieldInfo>]',
                    code='create-model-field-definitions',
                )

        else:
            f_annotation, f_value = None, f_def

        if f_annotation:
            annotations[f_name] = f_annotation
        fields[f_name] = f_value

    if __module__ is None:
        f = sys._getframe(1)
        __module__ = f.f_globals['__name__']

    namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__}
    if __doc__:
        namespace.update({'__doc__': __doc__})
    if __validators__:
        namespace.update(__validators__)
    namespace.update(fields)
    if __config__:
        namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict
    resolved_bases = types.resolve_bases(__base__)
    meta, ns, kwds = types.prepare_class(model_name, resolved_bases, kwds=__cls_kwargs__)
    if resolved_bases is not __base__:
        ns['__orig_bases__'] = __base__
    namespace.update(ns)

    return meta(
        model_name,
        resolved_bases,
        namespace,
        __pydantic_reset_parent_namespace__=False,
        _create_model_module=__module__,
        **kwds,
    )