Validation Decorator
API Documentation
The @validate_call
decorator allows the arguments passed to a function to be parsed
and validated using the function's annotations before the function is called.
While under the hood this uses the same approach of model creation and initialisation (see Validators for more details), it provides an extremely easy way to apply validation to your code with minimal boilerplate.
Example of usage:
from pydantic import ValidationError, validate_call
@validate_call
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
b = s.encode()
return separator.join(b for _ in range(count))
a = repeat('hello', 3)
print(a)
#> b'hellohellohello'
b = repeat('x', '4', separator=b' ')
print(b)
#> b'x x x x'
try:
c = repeat('hello', 'wrong')
except ValidationError as exc:
print(exc)
"""
1 validation error for repeat
1
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='wrong', input_type=str]
"""
Argument types¶
Argument types are inferred from type annotations on the function, arguments without a type decorator are considered
as Any
. All types listed in types can be validated, including Pydantic models and
custom types.
As with the rest of Pydantic, types can be coerced by the decorator before they're passed to the actual function:
# TODO replace find_file with something that isn't affected the filesystem
import os
from pathlib import Path
from typing import Optional, Pattern
from pydantic import DirectoryPath, validate_call
@validate_call
def find_file(path: DirectoryPath, regex: Pattern, max=None) -> Optional[Path]:
for i, f in enumerate(path.glob('**/*')):
if max and i > max:
return
if f.is_file() and regex.fullmatch(str(f.relative_to(path))):
return f
# note: this_dir is a string here
this_dir = os.path.dirname(__file__)
print(find_file(this_dir, '^validation.*'))
print(find_file(this_dir, '^foobar.*', max=3))
A few notes:
- Though they're passed as strings,
path
andregex
are converted to aPath
object and regex respectively by the decorator. max
has no type annotation, so will be considered asAny
by the decorator.
Type coercion like this can be extremely helpful, but also confusing or not desired.
See Coercion and strictness for a discussion of @validate_call
's limitations
in this regard.
Function signatures¶
The @validate_call
decorator is designed to work with functions using all possible parameter configurations and
all possible combinations of these:
- Positional or keyword arguments with or without defaults.
- Variable positional arguments defined via
*
(often*args
). - Variable keyword arguments defined via
**
(often**kwargs
). - Keyword-only arguments: arguments after
*,
. - Positional-only arguments: arguments before
, /
(new in Python 3.8).
To demonstrate all the above parameter types:
from pydantic import validate_call
@validate_call
def pos_or_kw(a: int, b: int = 2) -> str:
return f'a={a} b={b}'
print(pos_or_kw(1))
#> a=1 b=2
print(pos_or_kw(a=1))
#> a=1 b=2
print(pos_or_kw(1, 3))
#> a=1 b=3
print(pos_or_kw(a=1, b=3))
#> a=1 b=3
@validate_call
def kw_only(*, a: int, b: int = 2) -> str:
return f'a={a} b={b}'
print(kw_only(a=1))
#> a=1 b=2
print(kw_only(a=1, b=3))
#> a=1 b=3
@validate_call
def pos_only(a: int, b: int = 2, /) -> str: # python 3.8 only
return f'a={a} b={b}'
print(pos_only(1))
#> a=1 b=2
print(pos_only(1, 2))
#> a=1 b=2
@validate_call
def var_args(*args: int) -> str:
return str(args)
print(var_args(1))
#> (1,)
print(var_args(1, 2))
#> (1, 2)
print(var_args(1, 2, 3))
#> (1, 2, 3)
@validate_call
def var_kwargs(**kwargs: int) -> str:
return str(kwargs)
print(var_kwargs(a=1))
#> {'a': 1}
print(var_kwargs(a=1, b=2))
#> {'a': 1, 'b': 2}
@validate_call
def armageddon(
a: int,
/, # python 3.8 only
b: int,
*c: int,
d: int,
e: int = None,
**f: int,
) -> str:
return f'a={a} b={b} c={c} d={d} e={e} f={f}'
print(armageddon(1, 2, d=3))
#> a=1 b=2 c=() d=3 e=None f={}
print(armageddon(1, 2, 3, 4, 5, 6, d=8, e=9, f=10, spam=11))
#> a=1 b=2 c=(3, 4, 5, 6) d=8 e=9 f={'f': 10, 'spam': 11}
Using Field to describe function arguments¶
Field can also be used with @validate_call
to provide extra information about
the field and validations. In general it should be used in a type hint with
Annotated, unless default_factory
is specified, in which case it should be
used as the default value of the field:
from datetime import datetime
from typing_extensions import Annotated
from pydantic import Field, ValidationError, validate_call
@validate_call
def how_many(num: Annotated[int, Field(gt=10)]):
return num
try:
how_many(1)
except ValidationError as e:
print(e)
"""
1 validation error for how_many
0
Input should be greater than 10 [type=greater_than, input_value=1, input_type=int]
"""
@validate_call
def when(dt: datetime = Field(default_factory=datetime.now)):
return dt
print(type(when()))
#> <class 'datetime.datetime'>
The alias
can be used with the decorator as normal.
from typing_extensions import Annotated
from pydantic import Field, validate_call
@validate_call
def how_many(num: Annotated[int, Field(gt=10, alias='number')]):
return num
how_many(number=42)
Usage with mypy¶
The validate_call
decorator should work "out of the box" with mypy since it's
defined to return a function with the same signature as the function it decorates. The only limitation is that
since we trick mypy into thinking the function returned by the decorator is the same as the function being
decorated; access to the raw function or other attributes will require type: ignore
.
Raw function¶
The raw function which was decorated is accessible, this is useful if in some scenarios you trust your input arguments and want to call the function in the most performant way (see notes on performance below):
from pydantic import validate_call
@validate_call
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
b = s.encode()
return separator.join(b for _ in range(count))
a = repeat('hello', 3)
print(a)
#> b'hellohellohello'
b = repeat.raw_function('good bye', 2, separator=b', ')
print(b)
#> b'good bye, good bye'
Async functions¶
@validate_call
can also be used on async functions:
class Connection:
async def execute(self, sql, *args):
return '[email protected]'
conn = Connection()
# ignore-above
import asyncio
from pydantic import PositiveInt, ValidationError, validate_call
@validate_call
async def get_user_email(user_id: PositiveInt):
# `conn` is some fictional connection to a database
email = await conn.execute('select email from users where id=$1', user_id)
if email is None:
raise RuntimeError('user not found')
else:
return email
async def main():
email = await get_user_email(123)
print(email)
#> [email protected]
try:
await get_user_email(-4)
except ValidationError as exc:
print(exc.errors())
"""
[
{
'type': 'greater_than',
'loc': (0,),
'msg': 'Input should be greater than 0',
'input': -4,
'ctx': {'gt': 0},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
"""
asyncio.run(main())
# requires: `conn.execute()` that will return `'[email protected]'`
Custom config¶
The model behind @validate_call
can be customised using a config
setting, which is equivalent to
setting the ConfigDict
sub-class in normal models.
Configuration is set using the config
keyword argument to the decorator, it may be either a config class
or a dict of properties which are converted to a class later.
from pydantic import ValidationError, validate_call
class Foobar:
def __init__(self, v: str):
self.v = v
def __add__(self, other: 'Foobar') -> str:
return f'{self} + {other}'
def __str__(self) -> str:
return f'Foobar({self.v})'
@validate_call(config=dict(arbitrary_types_allowed=True))
def add_foobars(a: Foobar, b: Foobar):
return a + b
c = add_foobars(Foobar('a'), Foobar('b'))
print(c)
#> Foobar(a) + Foobar(b)
try:
add_foobars(1, 2)
except ValidationError as e:
print(e)
"""
2 validation errors for add_foobars
0
Input should be an instance of Foobar [type=is_instance_of, input_value=1, input_type=int]
1
Input should be an instance of Foobar [type=is_instance_of, input_value=2, input_type=int]
"""
Extension — validating arguments before calling a function¶
In some cases, it may be helpful to separate validation of a function's arguments from the function call itself. This might be useful when a particular function is costly / time consuming.
Here's an example of a workaround you can use for that pattern:
from pydantic import validate_call
@validate_call
def validate_foo(a: int, b: int):
def foo():
return a + b
return foo
foo = validate_foo(a=1, b=2)
print(foo())
#> 3
Limitations¶
Validation exception¶
Currently upon validation failure, a standard Pydantic ValidationError
is raised.
See model error handling for details.
This is helpful since its str()
method provides useful details of the error which occurred and methods like
.errors()
and .json()
can be useful when exposing the errors to end users. However, ValidationError
inherits
from ValueError
not TypeError
, which may be unexpected since Python would raise a TypeError
upon invalid
or missing arguments. This may be addressed in future by either allowing a custom error or raising a different
exception by default, or both.
Coercion and strictness¶
Pydantic currently leans on the side of trying to coerce types rather than raise an error if a type is wrong,
see model data conversion and @validate_call
is no different.
Performance¶
We've made a big effort to make Pydantic as performant as possible
and argument inspect and model creation is only performed once when the function is defined, however
there will still be a performance impact to using the @validate_call
decorator compared to
calling the raw function.
In many situations this will have little or no noticeable effect, however be aware that
@validate_call
is not an equivalent or alternative to function definitions in strongly typed languages;
it never will be.
Return value¶
The return value of the function may optionally be validated against its return type annotation.