Validators
🚧 Work in Progress
This page is a work in progress.
This page provides example snippets for creating more complex, custom validators in Pydantic.
Using Custom Validators with Annotated
Metadata¶
In this example, we'll construct a custom validator, attached to an Annotated
type,
that ensures a datetime
object adheres to a given timezone constraint.
The custom validator supports string specification of the timezone, and will raise an error if the datetime
object does not have the correct timezone.
We use __get_pydantic_core_schema__
in the validator to customize the schema of the annotated type (in this case, datetime
), which allows us to add custom validation logic. Notably, we use a wrap
validator function so that we can perform operations both before and after the default pydantic
validation of a datetime
.
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable, Optional
import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated
from pydantic import (
GetCoreSchemaHandler,
PydanticUserError,
TypeAdapter,
ValidationError,
)
@dataclass(frozen=True)
class MyDatetimeValidator:
tz_constraint: Optional[str] = None
def tz_constraint_validator(
self,
value: dt.datetime,
handler: Callable, # (1)!
):
"""Validate tz_constraint and tz_info."""
# handle naive datetimes
if self.tz_constraint is None:
assert (
value.tzinfo is None
), 'tz_constraint is None, but provided value is tz-aware.'
return handler(value)
# validate tz_constraint and tz-aware tzinfo
if self.tz_constraint not in pytz.all_timezones:
raise PydanticUserError(
f'Invalid tz_constraint: {self.tz_constraint}',
code='unevaluable-type-annotation',
)
result = handler(value) # (2)!
assert self.tz_constraint == str(
result.tzinfo
), f'Invalid tzinfo: {str(result.tzinfo)}, expected: {self.tz_constraint}'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.tz_constraint_validator,
handler(source_type),
)
LA = 'America/Los_Angeles'
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(LA)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
except ValidationError as ve:
pprint(ve.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Invalid tzinfo: Europe/London, expected: America/Los_Angeles')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Invalid tzinfo: Europe/London, expected: America/Los_Angeles',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
- The
handler
function is what we call to validate the input with standardpydantic
validation - We call the
handler
function to validate the input with standardpydantic
validation in this wrap validator
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable, Optional
import pytz
from pydantic_core import CoreSchema, core_schema
from typing import Annotated
from pydantic import (
GetCoreSchemaHandler,
PydanticUserError,
TypeAdapter,
ValidationError,
)
@dataclass(frozen=True)
class MyDatetimeValidator:
tz_constraint: Optional[str] = None
def tz_constraint_validator(
self,
value: dt.datetime,
handler: Callable, # (1)!
):
"""Validate tz_constraint and tz_info."""
# handle naive datetimes
if self.tz_constraint is None:
assert (
value.tzinfo is None
), 'tz_constraint is None, but provided value is tz-aware.'
return handler(value)
# validate tz_constraint and tz-aware tzinfo
if self.tz_constraint not in pytz.all_timezones:
raise PydanticUserError(
f'Invalid tz_constraint: {self.tz_constraint}',
code='unevaluable-type-annotation',
)
result = handler(value) # (2)!
assert self.tz_constraint == str(
result.tzinfo
), f'Invalid tzinfo: {str(result.tzinfo)}, expected: {self.tz_constraint}'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.tz_constraint_validator,
handler(source_type),
)
LA = 'America/Los_Angeles'
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(LA)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
except ValidationError as ve:
pprint(ve.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Invalid tzinfo: Europe/London, expected: America/Los_Angeles')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Invalid tzinfo: Europe/London, expected: America/Los_Angeles',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
- The
handler
function is what we call to validate the input with standardpydantic
validation - We call the
handler
function to validate the input with standardpydantic
validation in this wrap validator
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any
from collections.abc import Callable
import pytz
from pydantic_core import CoreSchema, core_schema
from typing import Annotated
from pydantic import (
GetCoreSchemaHandler,
PydanticUserError,
TypeAdapter,
ValidationError,
)
@dataclass(frozen=True)
class MyDatetimeValidator:
tz_constraint: str | None = None
def tz_constraint_validator(
self,
value: dt.datetime,
handler: Callable, # (1)!
):
"""Validate tz_constraint and tz_info."""
# handle naive datetimes
if self.tz_constraint is None:
assert (
value.tzinfo is None
), 'tz_constraint is None, but provided value is tz-aware.'
return handler(value)
# validate tz_constraint and tz-aware tzinfo
if self.tz_constraint not in pytz.all_timezones:
raise PydanticUserError(
f'Invalid tz_constraint: {self.tz_constraint}',
code='unevaluable-type-annotation',
)
result = handler(value) # (2)!
assert self.tz_constraint == str(
result.tzinfo
), f'Invalid tzinfo: {str(result.tzinfo)}, expected: {self.tz_constraint}'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.tz_constraint_validator,
handler(source_type),
)
LA = 'America/Los_Angeles'
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(LA)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
except ValidationError as ve:
pprint(ve.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Invalid tzinfo: Europe/London, expected: America/Los_Angeles')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Invalid tzinfo: Europe/London, expected: America/Los_Angeles',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
- The
handler
function is what we call to validate the input with standardpydantic
validation - We call the
handler
function to validate the input with standardpydantic
validation in this wrap validator
We can also enforce UTC offset constraints in a similar way. Assuming we have a lower_bound
and an upper_bound
, we can create a custom validator to ensure our datetime
has a UTC offset that is inclusive within the boundary we define:
import datetime as dt
from dataclasses import dataclass
from pprint import pprint
from typing import Any, Callable
import pytz
from pydantic_core import CoreSchema, core_schema
from typing_extensions import Annotated
from pydantic import GetCoreSchemaHandler, TypeAdapter, ValidationError
@dataclass(frozen=True)
class MyDatetimeValidator:
lower_bound: int
upper_bound: int
def validate_tz_bounds(self, value: dt.datetime, handler: Callable):
"""Validate and test bounds"""
assert value.utcoffset() is not None, 'UTC offset must exist'
assert self.lower_bound <= self.upper_bound, 'Invalid bounds'
result = handler(value)
hours_offset = value.utcoffset().total_seconds() / 3600
assert (
self.lower_bound <= hours_offset <= self.upper_bound
), 'Value out of bounds'
return result
def __get_pydantic_core_schema__(
self,
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
return core_schema.no_info_wrap_validator_function(
self.validate_tz_bounds,
handler(source_type),
)
LA = 'America/Los_Angeles' # UTC-7 or UTC-8
ta = TypeAdapter(Annotated[dt.datetime, MyDatetimeValidator(-10, -5)])
print(
ta.validate_python(dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LA)))
)
#> 2023-01-01 00:00:00-07:53
LONDON = 'Europe/London'
try:
print(
ta.validate_python(
dt.datetime(2023, 1, 1, 0, 0, tzinfo=pytz.timezone(LONDON))
)
)
except ValidationError as e:
pprint(e.errors(), width=100)
"""
[{'ctx': {'error': AssertionError('Value out of bounds')},
'input': datetime.datetime(2023, 1, 1, 0, 0, tzinfo=<DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>),
'loc': (),
'msg': 'Assertion failed, Value out of bounds',
'type': 'assertion_error',
'url': 'https://errors.pydantic.dev/2.8/v/assertion_error'}]
"""
Validating Nested Model Fields¶
Here, we demonstrate two ways to validate a field of a nested model, where the validator utilizes data from the parent model.
In this example, we construct a validator that checks that each user's password is not in a list of forbidden passwords specified by the parent model.
One way to do this is to place a custom validator on the outer model:
from typing import List
from typing_extensions import Self
from pydantic import BaseModel, ValidationError, model_validator
class User(BaseModel):
username: str
password: str
class Organization(BaseModel):
forbidden_passwords: List[str]
users: List[User]
@model_validator(mode='after')
def validate_user_passwords(self) -> Self:
"""Check that user password is not in forbidden list. Raise a validation error if a forbidden password is encountered."""
for user in self.users:
current_pw = user.password
if current_pw in self.forbidden_passwords:
raise ValueError(
f'Password {current_pw} is forbidden. Please choose another password for user {user.username}.'
)
return self
data = {
'forbidden_passwords': ['123'],
'users': [
{'username': 'Spartacat', 'password': '123'},
{'username': 'Iceburgh', 'password': '87'},
],
}
try:
org = Organization(**data)
except ValidationError as e:
print(e)
"""
1 validation error for Organization
Value error, Password 123 is forbidden. Please choose another password for user Spartacat. [type=value_error, input_value={'forbidden_passwords': [...gh', 'password': '87'}]}, input_type=dict]
"""
Alternatively, a custom validator can be used in the nested model class (User
), with the forbidden passwords data from the parent model being passed in via validation context.
Warning
The ability to mutate the context within a validator adds a lot of power to nested validation, but can also lead to confusing or hard-to-debug code. Use this approach at your own risk!
from typing import List
from pydantic import BaseModel, ValidationError, ValidationInfo, field_validator
class User(BaseModel):
username: str
password: str
@field_validator('password', mode='after')
@classmethod
def validate_user_passwords(
cls, password: str, info: ValidationInfo
) -> str:
"""Check that user password is not in forbidden list."""
forbidden_passwords = (
info.context.get('forbidden_passwords', []) if info.context else []
)
if password in forbidden_passwords:
raise ValueError(f'Password {password} is forbidden.')
return password
class Organization(BaseModel):
forbidden_passwords: List[str]
users: List[User]
@field_validator('forbidden_passwords', mode='after')
@classmethod
def add_context(cls, v: List[str], info: ValidationInfo) -> List[str]:
if info.context is not None:
info.context.update({'forbidden_passwords': v})
return v
data = {
'forbidden_passwords': ['123'],
'users': [
{'username': 'Spartacat', 'password': '123'},
{'username': 'Iceburgh', 'password': '87'},
],
}
try:
org = Organization.model_validate(data, context={})
except ValidationError as e:
print(e)
"""
1 validation error for Organization
users.0.password
Value error, Password 123 is forbidden. [type=value_error, input_value='123', input_type=str]
"""
Note that if the context property is not included in model_validate
, then info.context
will be None
and the forbidden passwords list will not get added to the context in the above implementation. As such, validate_user_passwords
would not carry out the desired password validation.
More details about validation context can be found here.