Fields
API Documentation
The Field
function is used to customize and add metadata to fields of models.
Default values¶
The default
parameter is used to define a default value for a field.
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(default='John Doe')
user = User()
print(user)
#> name='John Doe'
You can also use default_factory
to define a callable that will be called to generate a default value.
from uuid import uuid4
from pydantic import BaseModel, Field
class User(BaseModel):
id: str = Field(default_factory=lambda: uuid4().hex)
Info
The default
and default_factory
parameters are mutually exclusive.
Note
If you use typing.Optional
, it doesn't mean that the field has a default value of None
!
Using Annotated
¶
The Field
function can also be used together with Annotated
.
from uuid import uuid4
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class User(BaseModel):
id: Annotated[str, Field(default_factory=lambda: uuid4().hex)]
Note
Defaults can be set outside Annotated
as the assigned value or with Field.default_factory
inside
Annotated
. The Field.default
argument is not supported inside Annotated
.
Field aliases¶
For validation and serialization, you can define an alias for a field.
There are three ways to define an alias:
Field(..., alias='foo')
Field(..., validation_alias='foo')
Field(..., serialization_alias='foo')
The alias
parameter is used for both validation and serialization. If you want to use
different aliases for validation and serialization respectively, you can use thevalidation_alias
and serialization_alias
parameters, which will apply only in their respective use cases.
Here is an example of using the alias
parameter:
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(..., alias='username')
user = User(username='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'username': 'johndoe'}
- The alias
'username'
is used for instance creation and validation. -
We are using
model_dump
to convert the model into a serializable format.You can see more details about
model_dump
in the API reference.Note that the
by_alias
keyword argument defaults toFalse
, and must be specified explicitly to dump models using the field (serialization) aliases.When
by_alias=True
, the alias'username'
is also used during serialization.
If you want to use an alias only for validation, you can use the validation_alias
parameter:
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(..., validation_alias='username')
user = User(username='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'name': 'johndoe'}
- The validation alias
'username'
is used during validation. - The field name
'name'
is used during serialization.
If you only want to define an alias for serialization, you can use the serialization_alias
parameter:
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(..., serialization_alias='username')
user = User(name='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'username': 'johndoe'}
- The field name
'name'
is used for validation. - The serialization alias
'username'
is used for serialization.
Alias precedence and priority
In case you use alias
together with validation_alias
or serialization_alias
at the same time,
the validation_alias
will have priority over alias
for validation, and serialization_alias
will have priority
over alias
for serialization.
If you use an alias_generator
in the Model Config, you can control
the order of precedence for specified field vs generated aliases via the alias_priority
setting. You can read more about alias precedence here.
VSCode and Pyright users
In VSCode, if you use the Pylance extension, you won't see a warning when instantiating a model using a field's alias:
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(..., alias='username')
user = User(username='johndoe') # (1)!
- VSCode will NOT show a warning here.
When the 'alias'
keyword argument is specified, even if you set populate_by_name
to True
in the
Model Config, VSCode will show a warning when instantiating
a model using the field name (though it will work at runtime) — in this case, 'name'
:
from pydantic import BaseModel, ConfigDict, Field
class User(BaseModel):
model_config = ConfigDict(populate_by_name=True)
name: str = Field(..., alias='username')
user = User(name='johndoe') # (1)!
- VSCode will show a warning here.
To "trick" VSCode into preferring the field name, you can use the str
function to wrap the alias value.
With this approach, though, a warning is shown when instantiating a model using the alias for the field:
from pydantic import BaseModel, ConfigDict, Field
class User(BaseModel):
model_config = ConfigDict(populate_by_name=True)
name: str = Field(..., alias=str('username')) # noqa: UP018
user = User(name='johndoe') # (1)!
user = User(username='johndoe') # (2)!
- Now VSCode will NOT show a warning
- VSCode will show a warning here, though
This is discussed in more detail in this issue.
Validation Alias¶
Even though Pydantic treats alias
and validation_alias
the same when creating model instances, VSCode will not
use the validation_alias
in the class initializer signature. If you want VSCode to use the validation_alias
in the class initializer, you can instead specify both an alias
and serialization_alias
, as the
serialization_alias
will override the alias
during serialization:
from pydantic import BaseModel, Field
class MyModel(BaseModel):
my_field: int = Field(..., validation_alias='myValidationAlias')
from pydantic import BaseModel, Field
class MyModel(BaseModel):
my_field: int = Field(
...,
alias='myValidationAlias',
serialization_alias='my_serialization_alias',
)
m = MyModel(myValidationAlias=1)
print(m.model_dump(by_alias=True))
#> {'my_serialization_alias': 1}
All of the above will likely also apply to other tools that respect the
@typing.dataclass_transform
decorator, such as Pyright.
For more information on alias usage, see the Alias concepts page.
Numeric Constraints¶
There are some keyword arguments that can be used to constrain numeric values:
gt
- greater thanlt
- less thange
- greater than or equal tole
- less than or equal tomultiple_of
- a multiple of the given numberallow_inf_nan
- allow'inf'
,'-inf'
,'nan'
values
Here's an example:
from pydantic import BaseModel, Field
class Foo(BaseModel):
positive: int = Field(gt=0)
non_negative: int = Field(ge=0)
negative: int = Field(lt=0)
non_positive: int = Field(le=0)
even: int = Field(multiple_of=2)
love_for_pydantic: float = Field(allow_inf_nan=True)
foo = Foo(
positive=1,
non_negative=0,
negative=-1,
non_positive=0,
even=2,
love_for_pydantic=float('inf'),
)
print(foo)
"""
positive=1 non_negative=0 negative=-1 non_positive=0 even=2 love_for_pydantic=inf
"""
JSON Schema
In the generated JSON schema:
gt
andlt
constraints will be translated toexclusiveMinimum
andexclusiveMaximum
.ge
andle
constraints will be translated tominimum
andmaximum
.multiple_of
constraint will be translated tomultipleOf
.
The above snippet will generate the following JSON Schema:
{
"title": "Foo",
"type": "object",
"properties": {
"positive": {
"title": "Positive",
"type": "integer",
"exclusiveMinimum": 0
},
"non_negative": {
"title": "Non Negative",
"type": "integer",
"minimum": 0
},
"negative": {
"title": "Negative",
"type": "integer",
"exclusiveMaximum": 0
},
"non_positive": {
"title": "Non Positive",
"type": "integer",
"maximum": 0
},
"even": {
"title": "Even",
"type": "integer",
"multipleOf": 2
},
"love_for_pydantic": {
"title": "Love For Pydantic",
"type": "number"
}
},
"required": [
"positive",
"non_negative",
"negative",
"non_positive",
"even",
"love_for_pydantic"
]
}
See the JSON Schema Draft 2020-12 for more details.
Constraints on compound types
In case you use field constraints with compound types, an error can happen in some cases. To avoid potential issues,
you can use Annotated
:
from typing import Optional
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Foo(BaseModel):
positive: Optional[Annotated[int, Field(gt=0)]]
# Can error in some cases, not recommended:
non_negative: Optional[int] = Field(ge=0)
String Constraints¶
API Documentation
There are fields that can be used to constrain strings:
min_length
: Minimum length of the string.max_length
: Maximum length of the string.pattern
: A regular expression that the string must match.
Here's an example:
from pydantic import BaseModel, Field
class Foo(BaseModel):
short: str = Field(min_length=3)
long: str = Field(max_length=10)
regex: str = Field(pattern=r'^\d*$') # (1)!
foo = Foo(short='foo', long='foobarbaz', regex='123')
print(foo)
#> short='foo' long='foobarbaz' regex='123'
- Only digits are allowed.
JSON Schema
In the generated JSON schema:
min_length
constraint will be translated tominLength
.max_length
constraint will be translated tomaxLength
.pattern
constraint will be translated topattern
.
The above snippet will generate the following JSON Schema:
{
"title": "Foo",
"type": "object",
"properties": {
"short": {
"title": "Short",
"type": "string",
"minLength": 3
},
"long": {
"title": "Long",
"type": "string",
"maxLength": 10
},
"regex": {
"title": "Regex",
"type": "string",
"pattern": "^\\d*$"
}
},
"required": [
"short",
"long",
"regex"
]
}
Decimal Constraints¶
There are fields that can be used to constrain decimals:
max_digits
: Maximum number of digits within theDecimal
. It does not include a zero before the decimal point or trailing decimal zeroes.decimal_places
: Maximum number of decimal places allowed. It does not include trailing decimal zeroes.
Here's an example:
from decimal import Decimal
from pydantic import BaseModel, Field
class Foo(BaseModel):
precise: Decimal = Field(max_digits=5, decimal_places=2)
foo = Foo(precise=Decimal('123.45'))
print(foo)
#> precise=Decimal('123.45')
Dataclass Constraints¶
There are fields that can be used to constrain dataclasses:
init
: Whether the field should be included in the__init__
of the dataclass.init_var
: Whether the field should be seen as an init-only field in the dataclass.kw_only
: Whether the field should be a keyword-only argument in the constructor of the dataclass.
Here's an example:
from pydantic import BaseModel, Field
from pydantic.dataclasses import dataclass
@dataclass
class Foo:
bar: str
baz: str = Field(init_var=True)
qux: str = Field(kw_only=True)
class Model(BaseModel):
foo: Foo
model = Model(foo=Foo('bar', baz='baz', qux='qux'))
print(model.model_dump()) # (1)!
#> {'foo': {'bar': 'bar', 'qux': 'qux'}}
- The
baz
field is not included in themodel_dump()
output, since it is an init-only field.
Validate Default Values¶
The parameter validate_default
can be used to control whether the default value of the field should be validated.
By default, the default value of the field is not validated.
from pydantic import BaseModel, Field, ValidationError
class User(BaseModel):
age: int = Field(default='twelve', validate_default=True)
try:
user = User()
except ValidationError as e:
print(e)
"""
1 validation error for User
age
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='twelve', input_type=str]
"""
Field Representation¶
The parameter repr
can be used to control whether the field should be included in the string
representation of the model.
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(repr=True) # (1)!
age: int = Field(repr=False)
user = User(name='John', age=42)
print(user)
#> name='John'
- This is the default value.
Discriminator¶
The parameter discriminator
can be used to control the field that will be used to discriminate between different
models in a union. It takes either the name of a field or a Discriminator
instance. The Discriminator
approach can be useful when the discriminator fields aren't the same for all the models in the Union
.
The following example shows how to use discriminator
with a field name:
from typing import Literal, Union
from pydantic import BaseModel, Field
class Cat(BaseModel):
pet_type: Literal['cat']
age: int
class Dog(BaseModel):
pet_type: Literal['dog']
age: int
class Model(BaseModel):
pet: Union[Cat, Dog] = Field(discriminator='pet_type')
print(Model.model_validate({'pet': {'pet_type': 'cat', 'age': 12}})) # (1)!
#> pet=Cat(pet_type='cat', age=12)
- See more about Helper Functions in the Models page.
from typing import Literal
from pydantic import BaseModel, Field
class Cat(BaseModel):
pet_type: Literal['cat']
age: int
class Dog(BaseModel):
pet_type: Literal['dog']
age: int
class Model(BaseModel):
pet: Cat | Dog = Field(discriminator='pet_type')
print(Model.model_validate({'pet': {'pet_type': 'cat', 'age': 12}})) # (1)!
#> pet=Cat(pet_type='cat', age=12)
- See more about Helper Functions in the Models page.
The following example shows how to use the discriminator
keyword argument with a Discriminator
instance:
from typing import Literal, Union
from typing_extensions import Annotated
from pydantic import BaseModel, Discriminator, Field, Tag
class Cat(BaseModel):
pet_type: Literal['cat']
age: int
class Dog(BaseModel):
pet_kind: Literal['dog']
age: int
def pet_discriminator(v):
if isinstance(v, dict):
return v.get('pet_type', v.get('pet_kind'))
return getattr(v, 'pet_type', getattr(v, 'pet_kind', None))
class Model(BaseModel):
pet: Union[Annotated[Cat, Tag('cat')], Annotated[Dog, Tag('dog')]] = Field(
discriminator=Discriminator(pet_discriminator)
)
print(repr(Model.model_validate({'pet': {'pet_type': 'cat', 'age': 12}})))
#> Model(pet=Cat(pet_type='cat', age=12))
print(repr(Model.model_validate({'pet': {'pet_kind': 'dog', 'age': 12}})))
#> Model(pet=Dog(pet_kind='dog', age=12))
You can also take advantage of Annotated
to define your discriminated unions.
See the Discriminated Unions docs for more details.
Strict Mode¶
The strict
parameter on a Field
specifies whether the field should be validated in "strict mode".
In strict mode, Pydantic throws an error during validation instead of coercing data on the field where strict=True
.
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(strict=True) # (1)!
age: int = Field(strict=False)
user = User(name='John', age='42') # (2)!
print(user)
#> name='John' age=42
- This is the default value.
- The
age
field is not validated in the strict mode. Therefore, it can be assigned a string.
See Strict Mode for more details.
See Conversion Table for more details on how Pydantic converts data in both strict and lax modes.
Immutability¶
The parameter frozen
is used to emulate the frozen dataclass behaviour. It is used to prevent the field from being
assigned a new value after the model is created (immutability).
See the frozen dataclass documentation for more details.
from pydantic import BaseModel, Field, ValidationError
class User(BaseModel):
name: str = Field(frozen=True)
age: int
user = User(name='John', age=42)
try:
user.name = 'Jane' # (1)!
except ValidationError as e:
print(e)
"""
1 validation error for User
name
Field is frozen [type=frozen_field, input_value='Jane', input_type=str]
"""
- Since
name
field is frozen, the assignment is not allowed.
Exclude¶
The exclude
parameter can be used to control which fields should be excluded from the
model when exporting the model.
See the following example:
from pydantic import BaseModel, Field
class User(BaseModel):
name: str
age: int = Field(exclude=True)
user = User(name='John', age=42)
print(user.model_dump()) # (1)!
#> {'name': 'John'}
- The
age
field is not included in themodel_dump()
output, since it is excluded.
See the Serialization section for more details.
Deprecated fields¶
The deprecated
parameter can be used to mark a field as being deprecated. Doing so will result in:
- a runtime deprecation warning emitted when accessing the field.
"deprecated": true
being set in the generated JSON schema.
You can set the deprecated
parameter as one of:
- A string, which will be used as the deprecation message.
- An instance of the
warnings.deprecated
decorator (or thetyping_extensions
backport). - A boolean, which will be used to mark the field as deprecated with a default
'deprecated'
deprecation message.
deprecated
as a string¶
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, Field(deprecated='This is deprecated')]
print(Model.model_json_schema()['properties']['deprecated_field'])
#> {'deprecated': True, 'title': 'Deprecated Field', 'type': 'integer'}
deprecated
via the warnings.deprecated
decorator¶
Note
You can only use the deprecated
decorator in this way if you have
typing_extensions
>= 4.9.0 installed.
import importlib.metadata
from packaging.version import Version
from typing_extensions import Annotated, deprecated
from pydantic import BaseModel, Field
if Version(importlib.metadata.version('typing_extensions')) >= Version('4.9'):
class Model(BaseModel):
deprecated_field: Annotated[int, deprecated('This is deprecated')]
# Or explicitly using `Field`:
alt_form: Annotated[
int, Field(deprecated=deprecated('This is deprecated'))
]
deprecated
as a boolean¶
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, Field(deprecated=True)]
print(Model.model_json_schema()['properties']['deprecated_field'])
#> {'deprecated': True, 'title': 'Deprecated Field', 'type': 'integer'}
Support for category
and stacklevel
The current implementation of this feature does not take into account the category
and stacklevel
arguments to the deprecated
decorator. This might land in a future version of Pydantic.
Accessing a deprecated field in validators
When accessing a deprecated field inside a validator, the deprecation warning will be emitted. You can use
catch_warnings
to explicitly ignore it:
import warnings
from typing_extensions import Self
from pydantic import BaseModel, Field, model_validator
class Model(BaseModel):
deprecated_field: int = Field(deprecated='This is deprecated')
@model_validator(mode='after')
def validate_model(self) -> Self:
with warnings.catch_warnings():
warnings.simplefilter('ignore', DeprecationWarning)
self.deprecated_field = self.deprecated_field * 2
Customizing JSON Schema¶
Some field parameters are used exclusively to customize the generated JSON schema. The parameters in question are:
title
description
examples
json_schema_extra
Read more about JSON schema customization / modification with fields in the Customizing JSON Schema section of the JSON schema docs.
The computed_field
decorator¶
API Documentation
The computed_field
decorator can be used to include property
or cached_property
attributes when serializing a
model or dataclass. This can be useful for fields that are computed from other fields, or for fields that
are expensive to computed (and thus, are cached).
Here's an example:
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
def volume(self) -> float:
return self.width * self.height * self.depth
b = Box(width=1, height=2, depth=3)
print(b.model_dump())
#> {'width': 1.0, 'height': 2.0, 'depth': 3.0, 'volume': 6.0}
As with regular fields, computed fields can be marked as being deprecated:
from typing_extensions import deprecated
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
@deprecated("'volume' is deprecated")
def volume(self) -> float:
return self.width * self.height * self.depth