Keep in mind that pydantic.dataclasses.dataclass is not a replacement for pydantic.BaseModel.
pydantic.dataclasses.dataclass provides a similar functionality to dataclasses.dataclass with the addition of
Pydantic validation.
There are cases where subclassing pydantic.BaseModel is the better choice.
You can use all the standard Pydantic field types. Note, however, that arguments passed to constructor will be copied in
order to perform validation and, where necessary coercion.
To perform validation or generate a JSON schema on a Pydantic dataclass, you should now wrap the dataclass
with a TypeAdapter and make use of its methods.
Fields that require a default_factory can be specified by either a pydantic.Field or a dataclasses.field.
importdataclassesfromtypingimportList,OptionalfrompydanticimportField,TypeAdapterfrompydantic.dataclassesimportdataclass@dataclassclassUser:id:intname:str='John Doe'friends:List[int]=dataclasses.field(default_factory=lambda:[0])age:Optional[int]=dataclasses.field(default=None,metadata=dict(title='The age of the user',description='do not lie!'),)height:Optional[int]=Field(None,title='The height in cm',ge=50,le=300)user=User(id='42')print(TypeAdapter(User).json_schema())"""{ 'properties': { 'id': {'title': 'Id', 'type': 'integer'}, 'name': {'default': 'John Doe', 'title': 'Name', 'type': 'string'}, 'friends': { 'items': {'type': 'integer'}, 'title': 'Friends', 'type': 'array', }, 'age': { 'anyOf': [{'type': 'integer'}, {'type': 'null'}], 'default': None, 'description': 'do not lie!', 'title': 'The age of the user', }, 'height': { 'anyOf': [ {'maximum': 300, 'minimum': 50, 'type': 'integer'}, {'type': 'null'}, ], 'default': None, 'title': 'The height in cm', }, }, 'required': ['id'], 'title': 'User', 'type': 'object',}"""
pydantic.dataclasses.dataclass's arguments are the same as the standard decorator, except one extra
keyword argument config which has the same meaning as model_config.
Warning
After v1.2, The Mypy plugin must be installed to type check pydantic dataclasses.
For more information about combining validators with dataclasses, see
dataclass validators.
If you want to modify the config like you would with a BaseModel, you have two options:
Apply config to the dataclass decorator as a dict
Use ConfigDict as the config
frompydanticimportConfigDictfrompydantic.dataclassesimportdataclass# Option 1 - use directly a dict# Note: `mypy` will still raise typo error@dataclass(config=dict(validate_assignment=True))classMyDataclass1:a:int# Option 2 - use `ConfigDict`# (same as before at runtime since it's a `TypedDict` but with intellisense)@dataclass(config=ConfigDict(validate_assignment=True))classMyDataclass2:a:int
Note
Pydantic dataclasses support extra configuration to ignore, forbid, or
allow extra fields passed to the initializer. However, some default behavior of stdlib dataclasses may prevail.
For example, any extra fields present on a Pydantic dataclass using extra='allow' are omitted when the dataclass
is printed.
Stdlib dataclasses (nested or not) can also be inherited and Pydantic will automatically validate
all the inherited fields.
importdataclassesimportpydantic@dataclasses.dataclassclassZ:z:int@dataclasses.dataclassclassY(Z):y:int=0@pydantic.dataclasses.dataclassclassX(Y):x:int=0foo=X(x=b'1',y='2',z='3')print(foo)#> X(z=3, y=2, x=1)try:X(z='pika')exceptpydantic.ValidationErrorase:print(e)""" 1 validation error for X z Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='pika', input_type=str] """
Bear in mind that stdlib dataclasses (nested or not) are automatically converted into Pydantic
dataclasses when mixed with BaseModel! Furthermore the generated Pydantic dataclass will have
the exact same configuration (order, frozen, ...) as the original one.
importdataclassesfromdatetimeimportdatetimefromtypingimportOptionalfrompydanticimportBaseModel,ConfigDict,ValidationError@dataclasses.dataclass(frozen=True)classUser:name:str@dataclasses.dataclassclassFile:filename:strlast_modification_time:Optional[datetime]=NoneclassFoo(BaseModel):# Required so that pydantic revalidates the model attributesmodel_config=ConfigDict(revalidate_instances='always')file:Fileuser:Optional[User]=Nonefile=File(filename=['not','a','string'],last_modification_time='2020-01-01T00:00',)# nothing is validated as expectedprint(file)"""File(filename=['not', 'a', 'string'], last_modification_time='2020-01-01T00:00')"""try:Foo(file=file)exceptValidationErrorase:print(e)""" 1 validation error for Foo file.filename Input should be a valid string [type=string_type, input_value=['not', 'a', 'string'], input_type=list] """foo=Foo(file=File(filename='myfile'),user=User(name='pika'))try:foo.user.name='bulbi'exceptdataclasses.FrozenInstanceErrorase:print(e)#> cannot assign to field 'name'
Since stdlib dataclasses are automatically converted to add validation, using
custom types may cause some unexpected behavior.
In this case you can simply add arbitrary_types_allowed in the config!
importdataclassesfrompydanticimportBaseModel,ConfigDictfrompydantic.errorsimportPydanticSchemaGenerationErrorclassArbitraryType:def__init__(self,value):self.value=valuedef__repr__(self):returnf'ArbitraryType(value={self.value!r})'@dataclasses.dataclassclassDC:a:ArbitraryTypeb:str# valid as it is a builtin dataclass without validationmy_dc=DC(a=ArbitraryType(value=3),b='qwe')try:classModel(BaseModel):dc:DCother:str# invalid as it is now a pydantic dataclassModel(dc=my_dc,other='other')exceptPydanticSchemaGenerationErrorase:print(e.message)""" Unable to generate pydantic-core schema for <class '__main__.ArbitraryType'>. Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it. If you got this error by calling handler(<some type>) within `__get_pydantic_core_schema__` then you likely need to call `handler.generate_schema(<some type>)` since we do not call `__get_pydantic_core_schema__` on `<some type>` otherwise to avoid infinite recursion. """classModel(BaseModel):model_config=ConfigDict(arbitrary_types_allowed=True)dc:DCother:strm=Model(dc=my_dc,other='other')print(repr(m))#> Model(dc=DC(a=ArbitraryType(value=3), b='qwe'), other='other')
Pydantic dataclasses are still considered dataclasses, so using dataclasses.is_dataclass will return True. To check if a type is specifically a pydantic dataclass you can use pydantic.dataclasses.is_pydantic_dataclass.
When you initialize a dataclass, it is possible to execute code before or after validation
with the help of the @model_validator decorator mode parameter.
The __post_init__ in Pydantic dataclasses is called in the middle of validators.
Here is the order:
model_validator(mode='before')
field_validator(mode='before')
field_validator(mode='after')
Inner validators. e.g. validation for types like int, str, ...
__post_init__.
model_validator(mode='after')
fromdataclassesimportInitVarfrompathlibimportPathfromtypingimportOptionalfrompydantic.dataclassesimportdataclass@dataclassclassPathData:path:Pathbase_path:InitVar[Optional[Path]]def__post_init__(self,base_path):print(f'Received path={self.path!r}, base_path={base_path!r}')#> Received path=PosixPath('world'), base_path=PosixPath('/hello')ifbase_pathisnotNone:self.path=base_path/self.pathpath_data=PathData('world',base_path='/hello')# Received path='world', base_path='/hello'assertpath_data.path==Path('/hello/world')