TypeAdapter
Bases: Generic[T]
Usage Documentation
Type adapters provide a flexible way to perform validation and serialization based on a Python type.
A TypeAdapter
instance exposes some of the functionality from BaseModel
instance methods
for types that do not have such methods (such as dataclasses, primitive types, and more).
Note: TypeAdapter
instances are not types, and cannot be used as type annotations for fields.
Note: By default, TypeAdapter
does not respect the
defer_build=True
setting in the
model_config
or in the TypeAdapter
constructor config
. You need to also
explicitly set experimental_defer_build_mode=('model', 'type_adapter')
of the
config to defer the model validator and serializer construction. Thus, this feature is opt-in to ensure backwards
compatibility.
Attributes:
Name | Type | Description |
---|---|---|
core_schema |
CoreSchema
|
The core schema for the type. |
validator |
SchemaValidator
|
The schema validator for the type. |
serializer |
SchemaSerializer
|
The schema serializer for the type. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
type |
Any
|
The type associated with the |
required |
config |
ConfigDict | None
|
Configuration for the |
None
|
_parent_depth |
int
|
depth at which to search the parent namespace to construct the local namespace. |
2
|
module |
str | None
|
The module that passes to plugin if provided. |
None
|
Note
You cannot use the config
argument when instantiating a TypeAdapter
if the type you're using has its own
config that cannot be overridden (ex: BaseModel
, TypedDict
, and dataclass
). A
type-adapter-config-unused
error will be raised in this case.
Note
The _parent_depth
argument is named with an underscore to suggest its private nature and discourage use.
It may be deprecated in a minor version, so we only recommend using it if you're
comfortable with potential change in behavior / support.
Compatibility with mypy
Depending on the type used, mypy
might raise an error when instantiating a TypeAdapter
. As a workaround, you can explicitly
annotate your variable:
from typing import Union
from pydantic import TypeAdapter
ta: TypeAdapter[Union[str, int]] = TypeAdapter(Union[str, int]) # type: ignore[arg-type]
Returns:
Type | Description |
---|---|
None
|
A type adapter configured for the specified |
Source code in pydantic/type_adapter.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
core_schema
cached
property
¶
core_schema: CoreSchema
The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
validator
cached
property
¶
validator: SchemaValidator | PluggableSchemaValidator
The pydantic-core SchemaValidator used to validate instances of the model.
serializer
cached
property
¶
serializer: SchemaSerializer
The pydantic-core SchemaSerializer used to dump instances of the model.
validate_python ¶
validate_python(
object: Any,
/,
*,
strict: bool | None = None,
from_attributes: bool | None = None,
context: dict[str, Any] | None = None,
) -> T
Validate a Python object against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
object |
Any
|
The Python object to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
from_attributes |
bool | None
|
Whether to extract data from object attributes. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Note
When using TypeAdapter
with a Pydantic dataclass
, the use of the from_attributes
argument is not supported.
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
|
validate_json ¶
validate_json(
data: str | bytes,
/,
*,
strict: bool | None = None,
context: dict[str, Any] | None = None,
) -> T
Usage Documentation
Validate a JSON string or bytes against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | bytes
|
The JSON data to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
validate_strings ¶
validate_strings(
obj: Any,
/,
*,
strict: bool | None = None,
context: dict[str, Any] | None = None,
) -> T
Validate object contains string data against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj |
Any
|
The object contains string data to validate. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
get_default_value ¶
get_default_value(
*,
strict: bool | None = None,
context: dict[str, Any] | None = None
) -> Some[T] | None
Get the default value for the wrapped type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
Some[T] | None
|
The default value wrapped in a |
Source code in pydantic/type_adapter.py
407 408 409 410 411 412 413 414 415 416 417 418 |
|
dump_python ¶
dump_python(
instance: T,
/,
*,
mode: Literal["json", "python"] = "python",
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: (
bool | Literal["none", "warn", "error"]
) = True,
serialize_as_any: bool = False,
context: dict[str, Any] | None = None,
) -> Any
Dump an instance of the adapted type to a Python object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance |
T
|
The Python object to serialize. |
required |
mode |
Literal['json', 'python']
|
The output format. |
'python'
|
include |
IncEx | None
|
Fields to include in the output. |
None
|
exclude |
IncEx | None
|
Fields to exclude from the output. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with None values. |
False
|
round_trip |
bool
|
Whether to output the serialized data in a way that is compatible with deserialization. |
False
|
warnings |
bool | Literal['none', 'warn', 'error']
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a |
True
|
serialize_as_any |
bool
|
Whether to serialize fields with duck-typing serialization behavior. |
False
|
context |
dict[str, Any] | None
|
Additional context to pass to the serializer. |
None
|
Returns:
Type | Description |
---|---|
Any
|
The serialized object. |
Source code in pydantic/type_adapter.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
dump_json ¶
dump_json(
instance: T,
/,
*,
indent: int | None = None,
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: (
bool | Literal["none", "warn", "error"]
) = True,
serialize_as_any: bool = False,
context: dict[str, Any] | None = None,
) -> bytes
Usage Documentation
Serialize an instance of the adapted type to JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance |
T
|
The instance to be serialized. |
required |
indent |
int | None
|
Number of spaces for JSON indentation. |
None
|
include |
IncEx | None
|
Fields to include. |
None
|
exclude |
IncEx | None
|
Fields to exclude. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with a value of |
False
|
round_trip |
bool
|
Whether to serialize and deserialize the instance to ensure round-tripping. |
False
|
warnings |
bool | Literal['none', 'warn', 'error']
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a |
True
|
serialize_as_any |
bool
|
Whether to serialize fields with duck-typing serialization behavior. |
False
|
context |
dict[str, Any] | None
|
Additional context to pass to the serializer. |
None
|
Returns:
Type | Description |
---|---|
bytes
|
The JSON representation of the given instance as bytes. |
Source code in pydantic/type_adapter.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
|
json_schema ¶
json_schema(
*,
by_alias: bool = True,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[
GenerateJsonSchema
] = GenerateJsonSchema,
mode: JsonSchemaMode = "validation"
) -> dict[str, Any]
Generate a JSON schema for the adapted type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by_alias |
bool
|
Whether to use alias names for field names. |
True
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
mode |
JsonSchemaMode
|
The mode to use for schema generation. |
'validation'
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The JSON schema for the model as a dictionary. |
Source code in pydantic/type_adapter.py
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
json_schemas
staticmethod
¶
json_schemas(
inputs: Iterable[
tuple[
JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]
]
],
/,
*,
by_alias: bool = True,
title: str | None = None,
description: str | None = None,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[
GenerateJsonSchema
] = GenerateJsonSchema,
) -> tuple[
dict[
tuple[JsonSchemaKeyT, JsonSchemaMode],
JsonSchemaValue,
],
JsonSchemaValue,
]
Generate a JSON schema including definitions from multiple type adapters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Iterable[tuple[JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]]]
|
Inputs to schema generation. The first two items will form the keys of the (first) output mapping; the type adapters will provide the core schemas that get converted into definitions in the output JSON schema. |
required |
by_alias |
bool
|
Whether to use alias names. |
True
|
title |
str | None
|
The title for the schema. |
None
|
description |
str | None
|
The description for the schema. |
None
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
Returns:
Type | Description |
---|---|
tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]
|
A tuple where:
|
Source code in pydantic/type_adapter.py
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
|