Pydantic Types
The types module contains custom types used by pydantic.
StrictBool
module-attribute
¶
StrictBool = Annotated[bool, Strict()]
A boolean that must be either True
or False
.
PositiveInt
module-attribute
¶
PositiveInt = Annotated[int, Gt(0)]
An integer that must be greater than zero.
from pydantic import BaseModel, PositiveInt, ValidationError
class Model(BaseModel):
positive_int: PositiveInt
m = Model(positive_int=1)
print(repr(m))
#> Model(positive_int=1)
try:
Model(positive_int=-1)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than',
'loc': ('positive_int',),
'msg': 'Input should be greater than 0',
'input': -1,
'ctx': {'gt': 0},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
'''
NegativeInt
module-attribute
¶
NegativeInt = Annotated[int, Lt(0)]
An integer that must be less than zero.
from pydantic import BaseModel, NegativeInt, ValidationError
class Model(BaseModel):
negative_int: NegativeInt
m = Model(negative_int=-1)
print(repr(m))
#> Model(negative_int=-1)
try:
Model(negative_int=1)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'less_than',
'loc': ('negative_int',),
'msg': 'Input should be less than 0',
'input': 1,
'ctx': {'lt': 0},
'url': 'https://errors.pydantic.dev/2/v/less_than',
}
]
'''
NonPositiveInt
module-attribute
¶
NonPositiveInt = Annotated[int, Le(0)]
An integer that must be less than or equal to zero.
from pydantic import BaseModel, NonPositiveInt, ValidationError
class Model(BaseModel):
non_positive_int: NonPositiveInt
m = Model(non_positive_int=0)
print(repr(m))
#> Model(non_positive_int=0)
try:
Model(non_positive_int=1)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'less_than_equal',
'loc': ('non_positive_int',),
'msg': 'Input should be less than or equal to 0',
'input': 1,
'ctx': {'le': 0},
'url': 'https://errors.pydantic.dev/2/v/less_than_equal',
}
]
'''
NonNegativeInt
module-attribute
¶
NonNegativeInt = Annotated[int, Ge(0)]
An integer that must be greater than or equal to zero.
from pydantic import BaseModel, NonNegativeInt, ValidationError
class Model(BaseModel):
non_negative_int: NonNegativeInt
m = Model(non_negative_int=0)
print(repr(m))
#> Model(non_negative_int=0)
try:
Model(non_negative_int=-1)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than_equal',
'loc': ('non_negative_int',),
'msg': 'Input should be greater than or equal to 0',
'input': -1,
'ctx': {'ge': 0},
'url': 'https://errors.pydantic.dev/2/v/greater_than_equal',
}
]
'''
StrictInt
module-attribute
¶
StrictInt = Annotated[int, Strict()]
An integer that must be validated in strict mode.
from pydantic import BaseModel, StrictInt, ValidationError
class StrictIntModel(BaseModel):
strict_int: StrictInt
try:
StrictIntModel(strict_int=3.14159)
except ValidationError as e:
print(e)
'''
1 validation error for StrictIntModel
strict_int
Input should be a valid integer [type=int_type, input_value=3.14159, input_type=float]
'''
PositiveFloat
module-attribute
¶
PositiveFloat = Annotated[float, Gt(0)]
A float that must be greater than zero.
from pydantic import BaseModel, PositiveFloat, ValidationError
class Model(BaseModel):
positive_float: PositiveFloat
m = Model(positive_float=1.0)
print(repr(m))
#> Model(positive_float=1.0)
try:
Model(positive_float=-1.0)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than',
'loc': ('positive_float',),
'msg': 'Input should be greater than 0',
'input': -1.0,
'ctx': {'gt': 0.0},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
'''
NegativeFloat
module-attribute
¶
NegativeFloat = Annotated[float, Lt(0)]
A float that must be less than zero.
from pydantic import BaseModel, NegativeFloat, ValidationError
class Model(BaseModel):
negative_float: NegativeFloat
m = Model(negative_float=-1.0)
print(repr(m))
#> Model(negative_float=-1.0)
try:
Model(negative_float=1.0)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'less_than',
'loc': ('negative_float',),
'msg': 'Input should be less than 0',
'input': 1.0,
'ctx': {'lt': 0.0},
'url': 'https://errors.pydantic.dev/2/v/less_than',
}
]
'''
NonPositiveFloat
module-attribute
¶
NonPositiveFloat = Annotated[float, Le(0)]
A float that must be less than or equal to zero.
from pydantic import BaseModel, NonPositiveFloat, ValidationError
class Model(BaseModel):
non_positive_float: NonPositiveFloat
m = Model(non_positive_float=0.0)
print(repr(m))
#> Model(non_positive_float=0.0)
try:
Model(non_positive_float=1.0)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'less_than_equal',
'loc': ('non_positive_float',),
'msg': 'Input should be less than or equal to 0',
'input': 1.0,
'ctx': {'le': 0.0},
'url': 'https://errors.pydantic.dev/2/v/less_than_equal',
}
]
'''
NonNegativeFloat
module-attribute
¶
NonNegativeFloat = Annotated[float, Ge(0)]
A float that must be greater than or equal to zero.
from pydantic import BaseModel, NonNegativeFloat, ValidationError
class Model(BaseModel):
non_negative_float: NonNegativeFloat
m = Model(non_negative_float=0.0)
print(repr(m))
#> Model(non_negative_float=0.0)
try:
Model(non_negative_float=-1.0)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than_equal',
'loc': ('non_negative_float',),
'msg': 'Input should be greater than or equal to 0',
'input': -1.0,
'ctx': {'ge': 0.0},
'url': 'https://errors.pydantic.dev/2/v/greater_than_equal',
}
]
'''
StrictFloat
module-attribute
¶
StrictFloat = Annotated[float, Strict(True)]
A float that must be validated in strict mode.
from pydantic import BaseModel, StrictFloat, ValidationError
class StrictFloatModel(BaseModel):
strict_float: StrictFloat
try:
StrictFloatModel(strict_float='1.0')
except ValidationError as e:
print(e)
'''
1 validation error for StrictFloatModel
strict_float
Input should be a valid number [type=float_type, input_value='1.0', input_type=str]
'''
FiniteFloat
module-attribute
¶
FiniteFloat = Annotated[float, AllowInfNan(False)]
A float that must be finite (not -inf
, inf
, or nan
).
from pydantic import BaseModel, FiniteFloat
class Model(BaseModel):
finite: FiniteFloat
m = Model(finite=1.0)
print(m)
#> finite=1.0
StrictBytes
module-attribute
¶
StrictBytes = Annotated[bytes, Strict()]
A bytes that must be validated in strict mode.
StrictStr
module-attribute
¶
StrictStr = Annotated[str, Strict()]
A string that must be validated in strict mode.
UUID1
module-attribute
¶
UUID1 = Annotated[UUID, UuidVersion(1)]
A UUID that must be version 1.
import uuid
from pydantic import UUID1, BaseModel
class Model(BaseModel):
uuid1: UUID1
Model(uuid1=uuid.uuid1())
UUID3
module-attribute
¶
UUID3 = Annotated[UUID, UuidVersion(3)]
A UUID that must be version 3.
import uuid
from pydantic import UUID3, BaseModel
class Model(BaseModel):
uuid3: UUID3
Model(uuid3=uuid.uuid3(uuid.NAMESPACE_DNS, 'pydantic.org'))
UUID4
module-attribute
¶
UUID4 = Annotated[UUID, UuidVersion(4)]
A UUID that must be version 4.
import uuid
from pydantic import UUID4, BaseModel
class Model(BaseModel):
uuid4: UUID4
Model(uuid4=uuid.uuid4())
UUID5
module-attribute
¶
UUID5 = Annotated[UUID, UuidVersion(5)]
A UUID that must be version 5.
import uuid
from pydantic import UUID5, BaseModel
class Model(BaseModel):
uuid5: UUID5
Model(uuid5=uuid.uuid5(uuid.NAMESPACE_DNS, 'pydantic.org'))
FilePath
module-attribute
¶
FilePath = Annotated[Path, PathType('file')]
A path that must point to a file.
from pathlib import Path
from pydantic import BaseModel, FilePath, ValidationError
class Model(BaseModel):
f: FilePath
path = Path('text.txt')
path.touch()
m = Model(f='text.txt')
print(m.model_dump())
#> {'f': PosixPath('text.txt')}
path.unlink()
path = Path('directory')
path.mkdir(exist_ok=True)
try:
Model(f='directory') # directory
except ValidationError as e:
print(e)
'''
1 validation error for Model
f
Path does not point to a file [type=path_not_file, input_value='directory', input_type=str]
'''
path.rmdir()
try:
Model(f='not-exists-file')
except ValidationError as e:
print(e)
'''
1 validation error for Model
f
Path does not point to a file [type=path_not_file, input_value='not-exists-file', input_type=str]
'''
DirectoryPath
module-attribute
¶
DirectoryPath = Annotated[Path, PathType('dir')]
A path that must point to a directory.
from pathlib import Path
from pydantic import BaseModel, DirectoryPath, ValidationError
class Model(BaseModel):
f: DirectoryPath
path = Path('directory/')
path.mkdir()
m = Model(f='directory/')
print(m.model_dump())
#> {'f': PosixPath('directory')}
path.rmdir()
path = Path('file.txt')
path.touch()
try:
Model(f='file.txt') # file
except ValidationError as e:
print(e)
'''
1 validation error for Model
f
Path does not point to a directory [type=path_not_directory, input_value='file.txt', input_type=str]
'''
path.unlink()
try:
Model(f='not-exists-directory')
except ValidationError as e:
print(e)
'''
1 validation error for Model
f
Path does not point to a directory [type=path_not_directory, input_value='not-exists-directory', input_type=str]
'''
NewPath
module-attribute
¶
NewPath = Annotated[Path, PathType('new')]
A path for a new file or directory that must not already exist.
Base64Bytes
module-attribute
¶
Base64Bytes = Annotated[
bytes, EncodedBytes(encoder=Base64Encoder)
]
A bytes type that is encoded and decoded using the standard (non-URL-safe) base64 encoder.
Note
Under the hood, Base64Bytes
use standard library base64.encodebytes
and base64.decodebytes
functions.
As a result, attempting to decode url-safe base64 data using the Base64Bytes
type may fail or produce an incorrect
decoding.
from pydantic import Base64Bytes, BaseModel, ValidationError
class Model(BaseModel):
base64_bytes: Base64Bytes
# Initialize the model with base64 data
m = Model(base64_bytes=b'VGhpcyBpcyB0aGUgd2F5')
# Access decoded value
print(m.base64_bytes)
#> b'This is the way'
# Serialize into the base64 form
print(m.model_dump())
#> {'base64_bytes': b'VGhpcyBpcyB0aGUgd2F5
'}
# Validate base64 data
try:
print(Model(base64_bytes=b'undecodable').base64_bytes)
except ValidationError as e:
print(e)
'''
1 validation error for Model
base64_bytes
Base64 decoding error: 'Incorrect padding' [type=base64_decode, input_value=b'undecodable', input_type=bytes]
'''
Base64Str
module-attribute
¶
Base64Str = Annotated[
str, EncodedStr(encoder=Base64Encoder)
]
A str type that is encoded and decoded using the standard (non-URL-safe) base64 encoder.
Note
Under the hood, Base64Bytes
use standard library base64.encodebytes
and base64.decodebytes
functions.
As a result, attempting to decode url-safe base64 data using the Base64Str
type may fail or produce an incorrect
decoding.
from pydantic import Base64Str, BaseModel, ValidationError
class Model(BaseModel):
base64_str: Base64Str
# Initialize the model with base64 data
m = Model(base64_str='VGhlc2UgYXJlbid0IHRoZSBkcm9pZHMgeW91J3JlIGxvb2tpbmcgZm9y')
# Access decoded value
print(m.base64_str)
#> These aren't the droids you're looking for
# Serialize into the base64 form
print(m.model_dump())
#> {'base64_str': 'VGhlc2UgYXJlbid0IHRoZSBkcm9pZHMgeW91J3JlIGxvb2tpbmcgZm9y
'}
# Validate base64 data
try:
print(Model(base64_str='undecodable').base64_str)
except ValidationError as e:
print(e)
'''
1 validation error for Model
base64_str
Base64 decoding error: 'Incorrect padding' [type=base64_decode, input_value='undecodable', input_type=str]
'''
Base64UrlBytes
module-attribute
¶
Base64UrlBytes = Annotated[
bytes, EncodedBytes(encoder=Base64UrlEncoder)
]
A bytes type that is encoded and decoded using the URL-safe base64 encoder.
Note
Under the hood, Base64UrlBytes
use standard library base64.urlsafe_b64encode
and base64.urlsafe_b64decode
functions.
As a result, the Base64UrlBytes
type can be used to faithfully decode "vanilla" base64 data
(using '+'
and '/'
).
from pydantic import Base64UrlBytes, BaseModel
class Model(BaseModel):
base64url_bytes: Base64UrlBytes
# Initialize the model with base64 data
m = Model(base64url_bytes=b'SHc_dHc-TXc==')
print(m)
#> base64url_bytes=b'Hw?tw>Mw'
Base64UrlStr
module-attribute
¶
Base64UrlStr = Annotated[
str, EncodedStr(encoder=Base64UrlEncoder)
]
A str type that is encoded and decoded using the URL-safe base64 encoder.
Note
Under the hood, Base64UrlStr
use standard library base64.urlsafe_b64encode
and base64.urlsafe_b64decode
functions.
As a result, the Base64UrlStr
type can be used to faithfully decode "vanilla" base64 data (using '+'
and '/'
).
from pydantic import Base64UrlStr, BaseModel
class Model(BaseModel):
base64url_str: Base64UrlStr
# Initialize the model with base64 data
m = Model(base64url_str='SHc_dHc-TXc==')
print(m)
#> base64url_str='Hw?tw>Mw'
JsonValue
module-attribute
¶
JsonValue = Union[
List["JsonValue"],
Dict[str, "JsonValue"],
str,
bool,
int,
float,
None,
]
A JsonValue
is used to represent a value that can be serialized to JSON.
It may be one of:
List['JsonValue']
Dict[str, 'JsonValue']
str
bool
int
float
None
The following example demonstrates how to use JsonValue
to validate JSON data,
and what kind of errors to expect when input data is not json serializable.
import json
from pydantic import BaseModel, JsonValue, ValidationError
class Model(BaseModel):
j: JsonValue
valid_json_data = {'j': {'a': {'b': {'c': 1, 'd': [2, None]}}}}
invalid_json_data = {'j': {'a': {'b': ...}}}
print(repr(Model.model_validate(valid_json_data)))
#> Model(j={'a': {'b': {'c': 1, 'd': [2, None]}}})
print(repr(Model.model_validate_json(json.dumps(valid_json_data))))
#> Model(j={'a': {'b': {'c': 1, 'd': [2, None]}}})
try:
Model.model_validate(invalid_json_data)
except ValidationError as e:
print(e)
'''
1 validation error for Model
j.dict.a.dict.b
input was not a valid JSON value [type=invalid-json-value, input_value=Ellipsis, input_type=ellipsis]
'''
OnErrorOmit
module-attribute
¶
OnErrorOmit = Annotated[T, _OnErrorOmit]
When used as an item in a list, the key type in a dict, optional values of a TypedDict, etc.
this annotation omits the item from the iteration if there is any error validating it.
That is, instead of a ValidationError
being propagated up and the entire iterable being discarded
any invalid items are discarded and the valid ones are returned.
Strict
dataclass
¶
Bases: PydanticMetadata
, BaseMetadata
Usage Documentation
A field metadata class to indicate that a field should be validated in strict mode.
Attributes:
Name | Type | Description |
---|---|---|
strict |
bool
|
Whether to validate the field in strict mode. |
Example
from typing_extensions import Annotated
from pydantic.types import Strict
StrictBool = Annotated[bool, Strict()]
AllowInfNan
dataclass
¶
Bases: PydanticMetadata
A field metadata class to indicate that a field should allow -inf
, inf
, and nan
.
StringConstraints
dataclass
¶
Bases: GroupedMetadata
Usage Documentation
Apply constraints to str
types.
Attributes:
Name | Type | Description |
---|---|---|
strip_whitespace |
bool | None
|
Whether to strip whitespace from the string. |
to_upper |
bool | None
|
Whether to convert the string to uppercase. |
to_lower |
bool | None
|
Whether to convert the string to lowercase. |
strict |
bool | None
|
Whether to validate the string in strict mode. |
min_length |
int | None
|
The minimum length of the string. |
max_length |
int | None
|
The maximum length of the string. |
pattern |
str | None
|
A regex pattern that the string must match. |
ImportString ¶
A type that can be used to import a type from a string.
ImportString
expects a string and loads the Python object importable at that dotted path.
Attributes of modules may be separated from the module by :
or .
, e.g. if 'math:cos'
was provided,
the resulting field value would be the functioncos
. If a .
is used and both an attribute and submodule
are present at the same path, the module will be preferred.
On model instantiation, pointers will be evaluated and imported. There is some nuance to this behavior, demonstrated in the examples below.
Good behavior:
from math import cos
from pydantic import BaseModel, Field, ImportString, ValidationError
class ImportThings(BaseModel):
obj: ImportString
# A string value will cause an automatic import
my_cos = ImportThings(obj='math.cos')
# You can use the imported function as you would expect
cos_of_0 = my_cos.obj(0)
assert cos_of_0 == 1
# A string whose value cannot be imported will raise an error
try:
ImportThings(obj='foo.bar')
except ValidationError as e:
print(e)
'''
1 validation error for ImportThings
obj
Invalid python path: No module named 'foo.bar' [type=import_error, input_value='foo.bar', input_type=str]
'''
# Actual python objects can be assigned as well
my_cos = ImportThings(obj=cos)
my_cos_2 = ImportThings(obj='math.cos')
my_cos_3 = ImportThings(obj='math:cos')
assert my_cos == my_cos_2 == my_cos_3
# You can set default field value either as Python object:
class ImportThingsDefaultPyObj(BaseModel):
obj: ImportString = math.cos
# or as a string value (but only if used with `validate_default=True`)
class ImportThingsDefaultString(BaseModel):
obj: ImportString = Field(default='math.cos', validate_default=True)
my_cos_default1 = ImportThingsDefaultPyObj()
my_cos_default2 = ImportThingsDefaultString()
assert my_cos_default1.obj == my_cos_default2.obj == math.cos
# note: this will not work!
class ImportThingsMissingValidateDefault(BaseModel):
obj: ImportString = 'math.cos'
my_cos_default3 = ImportThingsMissingValidateDefault()
assert my_cos_default3.obj == 'math.cos' # just string, not evaluated
Serializing an ImportString
type to json is also possible.
from pydantic import BaseModel, ImportString
class ImportThings(BaseModel):
obj: ImportString
# Create an instance
m = ImportThings(obj='math.cos')
print(m)
#> obj=<built-in function cos>
print(m.model_dump_json())
#> {"obj":"math.cos"}
Json ¶
A special type wrapper which loads JSON before parsing.
You can use the Json
data type to make Pydantic first load a raw JSON string before
validating the loaded data into the parametrized type:
from typing import Any, List
from pydantic import BaseModel, Json, ValidationError
class AnyJsonModel(BaseModel):
json_obj: Json[Any]
class ConstrainedJsonModel(BaseModel):
json_obj: Json[List[int]]
print(AnyJsonModel(json_obj='{"b": 1}'))
#> json_obj={'b': 1}
print(ConstrainedJsonModel(json_obj='[1, 2, 3]'))
#> json_obj=[1, 2, 3]
try:
ConstrainedJsonModel(json_obj=12)
except ValidationError as e:
print(e)
'''
1 validation error for ConstrainedJsonModel
json_obj
JSON input should be string, bytes or bytearray [type=json_type, input_value=12, input_type=int]
'''
try:
ConstrainedJsonModel(json_obj='[a, b]')
except ValidationError as e:
print(e)
'''
1 validation error for ConstrainedJsonModel
json_obj
Invalid JSON: expected value at line 1 column 2 [type=json_invalid, input_value='[a, b]', input_type=str]
'''
try:
ConstrainedJsonModel(json_obj='["a", "b"]')
except ValidationError as e:
print(e)
'''
2 validation errors for ConstrainedJsonModel
json_obj.0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
json_obj.1
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='b', input_type=str]
'''
When you dump the model using model_dump
or model_dump_json
, the dumped value will be the result of validation,
not the original JSON string. However, you can use the argument round_trip=True
to get the original JSON string back:
from typing import List
from pydantic import BaseModel, Json
class ConstrainedJsonModel(BaseModel):
json_obj: Json[List[int]]
print(ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json())
#> {"json_obj":[1,2,3]}
print(
ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json(round_trip=True)
)
#> {"json_obj":"[1,2,3]"}
SecretStr ¶
SecretStr(secret_value)
Bases: _SecretField[str]
A string used for storing sensitive information that you do not want to be visible in logging or tracebacks.
When the secret value is nonempty, it is displayed as '**********'
instead of the underlying value in
calls to repr()
and str()
. If the value is empty, it is displayed as ''
.
from pydantic import BaseModel, SecretStr
class User(BaseModel):
username: str
password: SecretStr
user = User(username='scolvin', password='password1')
print(user)
#> username='scolvin' password=SecretStr('**********')
print(user.password.get_secret_value())
#> password1
print((SecretStr('password'), SecretStr('')))
#> (SecretStr('**********'), SecretStr(''))
Source code in pydantic/types.py
1446 1447 |
|
SecretBytes ¶
SecretBytes(secret_value)
Bases: _SecretField[bytes]
A bytes used for storing sensitive information that you do not want to be visible in logging or tracebacks.
It displays b'**********'
instead of the string value on repr()
and str()
calls.
When the secret value is nonempty, it is displayed as b'**********'
instead of the underlying value in
calls to repr()
and str()
. If the value is empty, it is displayed as b''
.
from pydantic import BaseModel, SecretBytes
class User(BaseModel):
username: str
password: SecretBytes
user = User(username='scolvin', password=b'password1')
#> username='scolvin' password=SecretBytes(b'**********')
print(user.password.get_secret_value())
#> b'password1'
print((SecretBytes(b'password'), SecretBytes(b'')))
#> (SecretBytes(b'**********'), SecretBytes(b''))
Source code in pydantic/types.py
1446 1447 |
|
PaymentCardNumber ¶
PaymentCardNumber(card_number)
Bases: str
Based on: https://en.wikipedia.org/wiki/Payment_card_number.
Source code in pydantic/types.py
1618 1619 1620 1621 1622 1623 1624 1625 |
|
masked
property
¶
masked
Mask all but the last 4 digits of the card number.
Returns:
Type | Description |
---|---|
str
|
A masked card number string. |
validate
classmethod
¶
validate(__input_value, _)
Validate the card number and return a PaymentCardNumber
instance.
Source code in pydantic/types.py
1636 1637 1638 1639 |
|
validate_digits
classmethod
¶
validate_digits(card_number)
Validate that the card number is all digits.
Source code in pydantic/types.py
1651 1652 1653 1654 1655 |
|
validate_luhn_check_digit
classmethod
¶
validate_luhn_check_digit(card_number)
Based on: https://en.wikipedia.org/wiki/Luhn_algorithm.
Source code in pydantic/types.py
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 |
|
validate_brand
staticmethod
¶
validate_brand(card_number)
Validate length based on BIN for major brands: https://en.wikipedia.org/wiki/Payment_card_number#Issuer_identification_number_(IIN).
Source code in pydantic/types.py
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 |
|
ByteSize ¶
Bases: int
Converts a string representing a number of bytes with units (such as '1KB'
or '11.5MiB'
) into an integer.
You can use the ByteSize
data type to (case-insensitively) convert a string representation of a number of bytes into
an integer, and also to print out human-readable strings representing a number of bytes.
In conformance with IEC 80000-13 Standard we interpret '1KB'
to mean 1000 bytes,
and '1KiB'
to mean 1024 bytes. In general, including a middle 'i'
will cause the unit to be interpreted as a power of 2,
rather than a power of 10 (so, for example, '1 MB'
is treated as 1_000_000
bytes, whereas '1 MiB'
is treated as 1_048_576
bytes).
Info
Note that 1b
will be parsed as "1 byte" and not "1 bit".
from pydantic import BaseModel, ByteSize
class MyModel(BaseModel):
size: ByteSize
print(MyModel(size=52000).size)
#> 52000
print(MyModel(size='3000 KiB').size)
#> 3072000
m = MyModel(size='50 PB')
print(m.size.human_readable())
#> 44.4PiB
print(m.size.human_readable(decimal=True))
#> 50.0PB
print(m.size.to('TiB'))
#> 45474.73508864641
human_readable ¶
human_readable(decimal=False)
Converts a byte size to a human readable string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decimal |
bool
|
If True, use decimal units (e.g. 1000 bytes per KB). If False, use binary units (e.g. 1024 bytes per KiB). |
False
|
Returns:
Type | Description |
---|---|
str
|
A human readable string representation of the byte size. |
Source code in pydantic/types.py
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 |
|
to ¶
to(unit)
Converts a byte size to another unit, including both byte and bit units.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unit |
str
|
The unit to convert to. Must be one of the following: B, KB, MB, GB, TB, PB, EB, KiB, MiB, GiB, TiB, PiB, EiB (byte units) and bit, kbit, mbit, gbit, tbit, pbit, ebit, kibit, mibit, gibit, tibit, pibit, eibit (bit units). |
required |
Returns:
Type | Description |
---|---|
float
|
The byte size in the new unit. |
Source code in pydantic/types.py
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 |
|
PastDate ¶
A date in the past.
FutureDate ¶
A date in the future.
AwareDatetime ¶
A datetime that requires timezone info.
NaiveDatetime ¶
A datetime that doesn't require timezone info.
PastDatetime ¶
A datetime that must be in the past.
FutureDatetime ¶
A datetime that must be in the future.
EncoderProtocol ¶
Bases: Protocol
Protocol for encoding and decoding data to and from bytes.
decode
classmethod
¶
decode(data)
Decode the data using the encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
bytes
|
The data to decode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The decoded data. |
Source code in pydantic/types.py
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 |
|
encode
classmethod
¶
encode(value)
Encode the data using the encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
bytes
|
The data to encode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The encoded data. |
Source code in pydantic/types.py
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 |
|
get_json_format
classmethod
¶
get_json_format()
Get the JSON format for the encoded data.
Returns:
Type | Description |
---|---|
str
|
The JSON format for the encoded data. |
Source code in pydantic/types.py
2067 2068 2069 2070 2071 2072 2073 2074 |
|
Base64Encoder ¶
Bases: EncoderProtocol
Standard (non-URL-safe) Base64 encoder.
decode
classmethod
¶
decode(data)
Decode the data from base64 encoded bytes to original bytes data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
bytes
|
The data to decode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The decoded data. |
Source code in pydantic/types.py
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 |
|
encode
classmethod
¶
encode(value)
Encode the data from bytes to a base64 encoded bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
bytes
|
The data to encode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The encoded data. |
Source code in pydantic/types.py
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 |
|
get_json_format
classmethod
¶
get_json_format()
Get the JSON format for the encoded data.
Returns:
Type | Description |
---|---|
Literal['base64']
|
The JSON format for the encoded data. |
Source code in pydantic/types.py
2107 2108 2109 2110 2111 2112 2113 2114 |
|
Base64UrlEncoder ¶
Bases: EncoderProtocol
URL-safe Base64 encoder.
decode
classmethod
¶
decode(data)
Decode the data from base64 encoded bytes to original bytes data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
bytes
|
The data to decode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The decoded data. |
Source code in pydantic/types.py
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 |
|
encode
classmethod
¶
encode(value)
Encode the data from bytes to a base64 encoded bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
bytes
|
The data to encode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The encoded data. |
Source code in pydantic/types.py
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 |
|
get_json_format
classmethod
¶
get_json_format()
Get the JSON format for the encoded data.
Returns:
Type | Description |
---|---|
Literal['base64url']
|
The JSON format for the encoded data. |
Source code in pydantic/types.py
2147 2148 2149 2150 2151 2152 2153 2154 |
|
EncodedBytes
dataclass
¶
A bytes type that is encoded and decoded using the specified encoder.
EncodedBytes
needs an encoder that implements EncoderProtocol
to operate.
from typing_extensions import Annotated
from pydantic import BaseModel, EncodedBytes, EncoderProtocol, ValidationError
class MyEncoder(EncoderProtocol):
@classmethod
def decode(cls, data: bytes) -> bytes:
if data == b'**undecodable**':
raise ValueError('Cannot decode data')
return data[13:]
@classmethod
def encode(cls, value: bytes) -> bytes:
return b'**encoded**: ' + value
@classmethod
def get_json_format(cls) -> str:
return 'my-encoder'
MyEncodedBytes = Annotated[bytes, EncodedBytes(encoder=MyEncoder)]
class Model(BaseModel):
my_encoded_bytes: MyEncodedBytes
# Initialize the model with encoded data
m = Model(my_encoded_bytes=b'**encoded**: some bytes')
# Access decoded value
print(m.my_encoded_bytes)
#> b'some bytes'
# Serialize into the encoded form
print(m.model_dump())
#> {'my_encoded_bytes': b'**encoded**: some bytes'}
# Validate encoded data
try:
Model(my_encoded_bytes=b'**undecodable**')
except ValidationError as e:
print(e)
'''
1 validation error for Model
my_encoded_bytes
Value error, Cannot decode data [type=value_error, input_value=b'**undecodable**', input_type=bytes]
'''
decode ¶
decode(data, _)
Decode the data using the specified encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
bytes
|
The data to decode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The decoded data. |
Source code in pydantic/types.py
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 |
|
encode ¶
encode(value)
Encode the data using the specified encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
bytes
|
The data to encode. |
required |
Returns:
Type | Description |
---|---|
bytes
|
The encoded data. |
Source code in pydantic/types.py
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 |
|
EncodedStr
dataclass
¶
Bases: EncodedBytes
A str type that is encoded and decoded using the specified encoder.
EncodedStr
needs an encoder that implements EncoderProtocol
to operate.
from typing_extensions import Annotated
from pydantic import BaseModel, EncodedStr, EncoderProtocol, ValidationError
class MyEncoder(EncoderProtocol):
@classmethod
def decode(cls, data: bytes) -> bytes:
if data == b'**undecodable**':
raise ValueError('Cannot decode data')
return data[13:]
@classmethod
def encode(cls, value: bytes) -> bytes:
return b'**encoded**: ' + value
@classmethod
def get_json_format(cls) -> str:
return 'my-encoder'
MyEncodedStr = Annotated[str, EncodedStr(encoder=MyEncoder)]
class Model(BaseModel):
my_encoded_str: MyEncodedStr
# Initialize the model with encoded data
m = Model(my_encoded_str='**encoded**: some str')
# Access decoded value
print(m.my_encoded_str)
#> some str
# Serialize into the encoded form
print(m.model_dump())
#> {'my_encoded_str': '**encoded**: some str'}
# Validate encoded data
try:
Model(my_encoded_str='**undecodable**')
except ValidationError as e:
print(e)
'''
1 validation error for Model
my_encoded_str
Value error, Cannot decode data [type=value_error, input_value='**undecodable**', input_type=str]
'''
decode_str ¶
decode_str(data, _)
Decode the data using the specified encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
bytes
|
The data to decode. |
required |
Returns:
Type | Description |
---|---|
str
|
The decoded data. |
Source code in pydantic/types.py
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 |
|
encode_str ¶
encode_str(value)
Encode the data using the specified encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
str
|
The data to encode. |
required |
Returns:
Type | Description |
---|---|
str
|
The encoded data. |
Source code in pydantic/types.py
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 |
|
GetPydanticSchema
dataclass
¶
Usage Documentation
A convenience class for creating an annotation that provides pydantic custom type hooks.
This class is intended to eliminate the need to create a custom "marker" which defines the
__get_pydantic_core_schema__
and __get_pydantic_json_schema__
custom hook methods.
For example, to have a field treated by type checkers as int
, but by pydantic as Any
, you can do:
from typing import Any
from typing_extensions import Annotated
from pydantic import BaseModel, GetPydanticSchema
HandleAsAny = GetPydanticSchema(lambda _s, h: h(Any))
class Model(BaseModel):
x: Annotated[int, HandleAsAny] # pydantic sees `x: Any`
print(repr(Model(x='abc').x))
#> 'abc'
Tag
dataclass
¶
Provides a way to specify the expected tag to use for a case of a (callable) discriminated union.
Also provides a way to label a union case in error messages.
When using a callable Discriminator
, attach a Tag
to each case in the Union
to specify the tag that
should be used to identify that case. For example, in the below example, the Tag
is used to specify that
if get_discriminator_value
returns 'apple'
, the input should be validated as an ApplePie
, and if it
returns 'pumpkin'
, the input should be validated as a PumpkinPie
.
The primary role of the Tag
here is to map the return value from the callable Discriminator
function to
the appropriate member of the Union
in question.
from typing import Any, Union
from typing_extensions import Annotated, Literal
from pydantic import BaseModel, Discriminator, Tag
class Pie(BaseModel):
time_to_cook: int
num_ingredients: int
class ApplePie(Pie):
fruit: Literal['apple'] = 'apple'
class PumpkinPie(Pie):
filling: Literal['pumpkin'] = 'pumpkin'
def get_discriminator_value(v: Any) -> str:
if isinstance(v, dict):
return v.get('fruit', v.get('filling'))
return getattr(v, 'fruit', getattr(v, 'filling', None))
class ThanksgivingDinner(BaseModel):
dessert: Annotated[
Union[
Annotated[ApplePie, Tag('apple')],
Annotated[PumpkinPie, Tag('pumpkin')],
],
Discriminator(get_discriminator_value),
]
apple_variation = ThanksgivingDinner.model_validate(
{'dessert': {'fruit': 'apple', 'time_to_cook': 60, 'num_ingredients': 8}}
)
print(repr(apple_variation))
'''
ThanksgivingDinner(dessert=ApplePie(time_to_cook=60, num_ingredients=8, fruit='apple'))
'''
pumpkin_variation = ThanksgivingDinner.model_validate(
{
'dessert': {
'filling': 'pumpkin',
'time_to_cook': 40,
'num_ingredients': 6,
}
}
)
print(repr(pumpkin_variation))
'''
ThanksgivingDinner(dessert=PumpkinPie(time_to_cook=40, num_ingredients=6, filling='pumpkin'))
'''
Note
You must specify a Tag
for every case in a Tag
that is associated with a
callable Discriminator
. Failing to do so will result in a PydanticUserError
with code
callable-discriminator-no-tag
.
See the Discriminated Unions concepts docs for more details on how to use Tag
s.
Discriminator
dataclass
¶
Usage Documentation
Provides a way to use a custom callable as the way to extract the value of a union discriminator.
This allows you to get validation behavior like you'd get from Field(discriminator=<field_name>)
,
but without needing to have a single shared field across all the union choices. This also makes it
possible to handle unions of models and primitive types with discriminated-union-style validation errors.
Finally, this allows you to use a custom callable as the way to identify which member of a union a value
belongs to, while still seeing all the performance benefits of a discriminated union.
Consider this example, which is much more performant with the use of Discriminator
and thus a TaggedUnion
than it would be as a normal Union
.
from typing import Any, Union
from typing_extensions import Annotated, Literal
from pydantic import BaseModel, Discriminator, Tag
class Pie(BaseModel):
time_to_cook: int
num_ingredients: int
class ApplePie(Pie):
fruit: Literal['apple'] = 'apple'
class PumpkinPie(Pie):
filling: Literal['pumpkin'] = 'pumpkin'
def get_discriminator_value(v: Any) -> str:
if isinstance(v, dict):
return v.get('fruit', v.get('filling'))
return getattr(v, 'fruit', getattr(v, 'filling', None))
class ThanksgivingDinner(BaseModel):
dessert: Annotated[
Union[
Annotated[ApplePie, Tag('apple')],
Annotated[PumpkinPie, Tag('pumpkin')],
],
Discriminator(get_discriminator_value),
]
apple_variation = ThanksgivingDinner.model_validate(
{'dessert': {'fruit': 'apple', 'time_to_cook': 60, 'num_ingredients': 8}}
)
print(repr(apple_variation))
'''
ThanksgivingDinner(dessert=ApplePie(time_to_cook=60, num_ingredients=8, fruit='apple'))
'''
pumpkin_variation = ThanksgivingDinner.model_validate(
{
'dessert': {
'filling': 'pumpkin',
'time_to_cook': 40,
'num_ingredients': 6,
}
}
)
print(repr(pumpkin_variation))
'''
ThanksgivingDinner(dessert=PumpkinPie(time_to_cook=40, num_ingredients=6, filling='pumpkin'))
'''
See the Discriminated Unions concepts docs for more details on how to use Discriminator
s.
discriminator
instance-attribute
¶
discriminator
The callable or field name for discriminating the type in a tagged union.
A Callable
discriminator must extract the value of the discriminator from the input.
A str
discriminator must be the name of a field to discriminate against.
custom_error_type
class-attribute
instance-attribute
¶
custom_error_type = None
Type to use in custom errors replacing the standard discriminated union validation errors.
custom_error_message
class-attribute
instance-attribute
¶
custom_error_message = None
Message to use in custom errors.
custom_error_context
class-attribute
instance-attribute
¶
custom_error_context = None
Context to use in custom errors.
conint ¶
conint(
*,
strict=None,
gt=None,
ge=None,
lt=None,
le=None,
multiple_of=None
)
Discouraged
This function is discouraged in favor of using
Annotated
with
Field
instead.
This function will be deprecated in Pydantic 3.0.
The reason is that conint
returns a type, which doesn't play well with static analysis tools.
from pydantic import BaseModel, conint
class Foo(BaseModel):
bar: conint(strict=True, gt=0)
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Foo(BaseModel):
bar: Annotated[int, Field(strict=True, gt=0)]
A wrapper around int
that allows for additional constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to validate the integer in strict mode. Defaults to |
None
|
gt |
int | None
|
The value must be greater than this. |
None
|
ge |
int | None
|
The value must be greater than or equal to this. |
None
|
lt |
int | None
|
The value must be less than this. |
None
|
le |
int | None
|
The value must be less than or equal to this. |
None
|
multiple_of |
int | None
|
The value must be a multiple of this. |
None
|
Returns:
Type | Description |
---|---|
type[int]
|
The wrapped integer type. |
from pydantic import BaseModel, ValidationError, conint
class ConstrainedExample(BaseModel):
constrained_int: conint(gt=1)
m = ConstrainedExample(constrained_int=2)
print(repr(m))
#> ConstrainedExample(constrained_int=2)
try:
ConstrainedExample(constrained_int=0)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than',
'loc': ('constrained_int',),
'msg': 'Input should be greater than 1',
'input': 0,
'ctx': {'gt': 1},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
'''
Source code in pydantic/types.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
confloat ¶
confloat(
*,
strict=None,
gt=None,
ge=None,
lt=None,
le=None,
multiple_of=None,
allow_inf_nan=None
)
Discouraged
This function is discouraged in favor of using
Annotated
with
Field
instead.
This function will be deprecated in Pydantic 3.0.
The reason is that confloat
returns a type, which doesn't play well with static analysis tools.
from pydantic import BaseModel, confloat
class Foo(BaseModel):
bar: confloat(strict=True, gt=0)
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Foo(BaseModel):
bar: Annotated[float, Field(strict=True, gt=0)]
A wrapper around float
that allows for additional constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to validate the float in strict mode. |
None
|
gt |
float | None
|
The value must be greater than this. |
None
|
ge |
float | None
|
The value must be greater than or equal to this. |
None
|
lt |
float | None
|
The value must be less than this. |
None
|
le |
float | None
|
The value must be less than or equal to this. |
None
|
multiple_of |
float | None
|
The value must be a multiple of this. |
None
|
allow_inf_nan |
bool | None
|
Whether to allow |
None
|
Returns:
Type | Description |
---|---|
type[float]
|
The wrapped float type. |
from pydantic import BaseModel, ValidationError, confloat
class ConstrainedExample(BaseModel):
constrained_float: confloat(gt=1.0)
m = ConstrainedExample(constrained_float=1.1)
print(repr(m))
#> ConstrainedExample(constrained_float=1.1)
try:
ConstrainedExample(constrained_float=0.9)
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than',
'loc': ('constrained_float',),
'msg': 'Input should be greater than 1',
'input': 0.9,
'ctx': {'gt': 1.0},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
'''
Source code in pydantic/types.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
conbytes ¶
conbytes(*, min_length=None, max_length=None, strict=None)
A wrapper around bytes
that allows for additional constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_length |
int | None
|
The minimum length of the bytes. |
None
|
max_length |
int | None
|
The maximum length of the bytes. |
None
|
strict |
bool | None
|
Whether to validate the bytes in strict mode. |
None
|
Returns:
Type | Description |
---|---|
type[bytes]
|
The wrapped bytes type. |
Source code in pydantic/types.py
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
|
constr ¶
constr(
*,
strip_whitespace=None,
to_upper=None,
to_lower=None,
strict=None,
min_length=None,
max_length=None,
pattern=None
)
Discouraged
This function is discouraged in favor of using
Annotated
with
StringConstraints
instead.
This function will be deprecated in Pydantic 3.0.
The reason is that constr
returns a type, which doesn't play well with static analysis tools.
from pydantic import BaseModel, constr
class Foo(BaseModel):
bar: constr(strip_whitespace=True, to_upper=True, pattern=r'^[A-Z]+$')
from typing_extensions import Annotated
from pydantic import BaseModel, StringConstraints
class Foo(BaseModel):
bar: Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, pattern=r'^[A-Z]+$')]
A wrapper around str
that allows for additional constraints.
from pydantic import BaseModel, constr
class Foo(BaseModel):
bar: constr(strip_whitespace=True, to_upper=True, pattern=r'^[A-Z]+$')
foo = Foo(bar=' hello ')
print(foo)
#> bar='HELLO'
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strip_whitespace |
bool | None
|
Whether to remove leading and trailing whitespace. |
None
|
to_upper |
bool | None
|
Whether to turn all characters to uppercase. |
None
|
to_lower |
bool | None
|
Whether to turn all characters to lowercase. |
None
|
strict |
bool | None
|
Whether to validate the string in strict mode. |
None
|
min_length |
int | None
|
The minimum length of the string. |
None
|
max_length |
int | None
|
The maximum length of the string. |
None
|
pattern |
str | None
|
A regex pattern to validate the string against. |
None
|
Returns:
Type | Description |
---|---|
type[str]
|
The wrapped string type. |
Source code in pydantic/types.py
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
|
conset ¶
conset(item_type, *, min_length=None, max_length=None)
A wrapper around typing.Set
that allows for additional constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item_type |
type[HashableItemType]
|
The type of the items in the set. |
required |
min_length |
int | None
|
The minimum length of the set. |
None
|
max_length |
int | None
|
The maximum length of the set. |
None
|
Returns:
Type | Description |
---|---|
type[set[HashableItemType]]
|
The wrapped set type. |
Source code in pydantic/types.py
805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
|
confrozenset ¶
confrozenset(
item_type, *, min_length=None, max_length=None
)
A wrapper around typing.FrozenSet
that allows for additional constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item_type |
type[HashableItemType]
|
The type of the items in the frozenset. |
required |
min_length |
int | None
|
The minimum length of the frozenset. |
None
|
max_length |
int | None
|
The maximum length of the frozenset. |
None
|
Returns:
Type | Description |
---|---|
type[frozenset[HashableItemType]]
|
The wrapped frozenset type. |
Source code in pydantic/types.py
821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
|
conlist ¶
conlist(
item_type,
*,
min_length=None,
max_length=None,
unique_items=None
)
A wrapper around typing.List that adds validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item_type |
type[AnyItemType]
|
The type of the items in the list. |
required |
min_length |
int | None
|
The minimum length of the list. Defaults to None. |
None
|
max_length |
int | None
|
The maximum length of the list. Defaults to None. |
None
|
unique_items |
bool | None
|
Whether the items in the list must be unique. Defaults to None. Warning The |
None
|
Returns:
Type | Description |
---|---|
type[list[AnyItemType]]
|
The wrapped list type. |
Source code in pydantic/types.py
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
|
condecimal ¶
condecimal(
*,
strict=None,
gt=None,
ge=None,
lt=None,
le=None,
multiple_of=None,
max_digits=None,
decimal_places=None,
allow_inf_nan=None
)
Discouraged
This function is discouraged in favor of using
Annotated
with
Field
instead.
This function will be deprecated in Pydantic 3.0.
The reason is that condecimal
returns a type, which doesn't play well with static analysis tools.
from pydantic import BaseModel, condecimal
class Foo(BaseModel):
bar: condecimal(strict=True, allow_inf_nan=True)
from decimal import Decimal
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Foo(BaseModel):
bar: Annotated[Decimal, Field(strict=True, allow_inf_nan=True)]
A wrapper around Decimal that adds validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to validate the value in strict mode. Defaults to |
None
|
gt |
int | Decimal | None
|
The value must be greater than this. Defaults to |
None
|
ge |
int | Decimal | None
|
The value must be greater than or equal to this. Defaults to |
None
|
lt |
int | Decimal | None
|
The value must be less than this. Defaults to |
None
|
le |
int | Decimal | None
|
The value must be less than or equal to this. Defaults to |
None
|
multiple_of |
int | Decimal | None
|
The value must be a multiple of this. Defaults to |
None
|
max_digits |
int | None
|
The maximum number of digits. Defaults to |
None
|
decimal_places |
int | None
|
The number of decimal places. Defaults to |
None
|
allow_inf_nan |
bool | None
|
Whether to allow infinity and NaN. Defaults to |
None
|
from decimal import Decimal
from pydantic import BaseModel, ValidationError, condecimal
class ConstrainedExample(BaseModel):
constrained_decimal: condecimal(gt=Decimal('1.0'))
m = ConstrainedExample(constrained_decimal=Decimal('1.1'))
print(repr(m))
#> ConstrainedExample(constrained_decimal=Decimal('1.1'))
try:
ConstrainedExample(constrained_decimal=Decimal('0.9'))
except ValidationError as e:
print(e.errors())
'''
[
{
'type': 'greater_than',
'loc': ('constrained_decimal',),
'msg': 'Input should be greater than 1.0',
'input': Decimal('0.9'),
'ctx': {'gt': Decimal('1.0')},
'url': 'https://errors.pydantic.dev/2/v/greater_than',
}
]
'''
Source code in pydantic/types.py
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
|
condate ¶
condate(*, strict=None, gt=None, ge=None, lt=None, le=None)
A wrapper for date that adds constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to validate the date value in strict mode. Defaults to |
None
|
gt |
date | None
|
The value must be greater than this. Defaults to |
None
|
ge |
date | None
|
The value must be greater than or equal to this. Defaults to |
None
|
lt |
date | None
|
The value must be less than this. Defaults to |
None
|
le |
date | None
|
The value must be less than or equal to this. Defaults to |
None
|
Returns:
Type | Description |
---|---|
type[date]
|
A date type with the specified constraints. |
Source code in pydantic/types.py
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 |
|