TypeAdapter
Bases: Generic[T]
Usage Documentation
Type adapters provide a flexible way to perform validation and serialization based on a Python type.
A TypeAdapter
instance exposes some of the functionality from BaseModel
instance methods
for types that do not have such methods (such as dataclasses, primitive types, and more).
Note: TypeAdapter
instances are not types, and cannot be used as type annotations for fields.
Attributes:
Name | Type | Description |
---|---|---|
core_schema |
The core schema for the type. |
|
validator |
SchemaValidator
|
The schema validator for the type. |
serializer |
The schema serializer for the type. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
type |
type[T] | T
|
The type associated with the |
required |
config |
ConfigDict | None
|
Configuration for the |
None
|
_parent_depth |
int
|
depth at which to search the parent namespace to construct the local namespace. |
2
|
module |
str | None
|
The module that passes to plugin if provided. |
None
|
Note
You cannot use the config
argument when instantiating a TypeAdapter
if the type you're using has its own
config that cannot be overridden (ex: BaseModel
, TypedDict
, and dataclass
). A
type-adapter-config-unused
error will be raised in this case.
Note
The _parent_depth
argument is named with an underscore to suggest its private nature and discourage use.
It may be deprecated in a minor version, so we only recommend using it if you're
comfortable with potential change in behavior / support.
Compatibility with mypy
Depending on the type used, mypy
might raise an error when instantiating a TypeAdapter
. As a workaround, you can explicitly
annotate your variable:
from typing import Union
from pydantic import TypeAdapter
ta: TypeAdapter[Union[str, int]] = TypeAdapter(Union[str, int]) # type: ignore[arg-type]
Returns:
Type | Description |
---|---|
None
|
A type adapter configured for the specified |
Source code in pydantic/type_adapter.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
validate_python ¶
validate_python(
__object,
*,
strict=None,
from_attributes=None,
context=None
)
Validate a Python object against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__object |
Any
|
The Python object to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
from_attributes |
bool | None
|
Whether to extract data from object attributes. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Note
When using TypeAdapter
with a Pydantic dataclass
, the use of the from_attributes
argument is not supported.
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
validate_json ¶
validate_json(__data, *, strict=None, context=None)
Usage Documentation
Validate a JSON string or bytes against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__data |
str | bytes
|
The JSON data to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
validate_strings ¶
validate_strings(__obj, *, strict=None, context=None)
Validate object contains string data against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__obj |
Any
|
The object contains string data to validate. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
277 278 279 280 281 282 283 284 285 286 287 288 |
|
get_default_value ¶
get_default_value(*, strict=None, context=None)
Get the default value for the wrapped type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
Some[T] | None
|
The default value wrapped in a |
Source code in pydantic/type_adapter.py
290 291 292 293 294 295 296 297 298 299 300 |
|
dump_python ¶
dump_python(
__instance,
*,
mode="python",
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Dump an instance of the adapted type to a Python object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__instance |
T
|
The Python object to serialize. |
required |
mode |
Literal['json', 'python']
|
The output format. |
'python'
|
include |
IncEx | None
|
Fields to include in the output. |
None
|
exclude |
IncEx | None
|
Fields to exclude from the output. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with None values. |
False
|
round_trip |
bool
|
Whether to output the serialized data in a way that is compatible with deserialization. |
False
|
warnings |
bool
|
Whether to display serialization warnings. |
True
|
Returns:
Type | Description |
---|---|
Any
|
The serialized object. |
Source code in pydantic/type_adapter.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
dump_json ¶
dump_json(
__instance,
*,
indent=None,
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Usage Documentation
Serialize an instance of the adapted type to JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__instance |
T
|
The instance to be serialized. |
required |
indent |
int | None
|
Number of spaces for JSON indentation. |
None
|
include |
IncEx | None
|
Fields to include. |
None
|
exclude |
IncEx | None
|
Fields to exclude. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with a value of |
False
|
round_trip |
bool
|
Whether to serialize and deserialize the instance to ensure round-tripping. |
False
|
warnings |
bool
|
Whether to emit serialization warnings. |
True
|
Returns:
Type | Description |
---|---|
bytes
|
The JSON representation of the given instance as bytes. |
Source code in pydantic/type_adapter.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
json_schema ¶
json_schema(
*,
by_alias=True,
ref_template=DEFAULT_REF_TEMPLATE,
schema_generator=GenerateJsonSchema,
mode="validation"
)
Generate a JSON schema for the adapted type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by_alias |
bool
|
Whether to use alias names for field names. |
True
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
mode |
JsonSchemaMode
|
The mode to use for schema generation. |
'validation'
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The JSON schema for the model as a dictionary. |
Source code in pydantic/type_adapter.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
|
json_schemas
staticmethod
¶
json_schemas(
__inputs,
*,
by_alias=True,
title=None,
description=None,
ref_template=DEFAULT_REF_TEMPLATE,
schema_generator=GenerateJsonSchema
)
Generate a JSON schema including definitions from multiple type adapters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__inputs |
Iterable[tuple[JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]]]
|
Inputs to schema generation. The first two items will form the keys of the (first) output mapping; the type adapters will provide the core schemas that get converted into definitions in the output JSON schema. |
required |
by_alias |
bool
|
Whether to use alias names. |
True
|
title |
str | None
|
The title for the schema. |
None
|
description |
str | None
|
The description for the schema. |
None
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
Returns:
Type | Description |
---|---|
tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]
|
A tuple where:
|
Source code in pydantic/type_adapter.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
|