JSON Schema
API Documentation
Pydantic allows automatic creation of JSON schemas from models.
Using Pydantic, there are several ways to generate JSON schemas or JSON representations from fields or models:
BaseModel.model_json_schema
returns a jsonable dict of the schema.BaseModel.model_dump_json
returns a JSON string representation of the dict of the schema.TypeAdapter.dump_json
serializes an instance of the adapted type to JSON.TypeAdapter.json_schema
generates a JSON schema for the adapted type.
The generated JSON schemas are compliant with the following specifications:
import json
from enum import Enum
from typing import Union
from typing_extensions import Annotated
from pydantic import BaseModel, Field
from pydantic.config import ConfigDict
class FooBar(BaseModel):
count: int
size: Union[float, None] = None
class Gender(str, Enum):
male = 'male'
female = 'female'
other = 'other'
not_given = 'not_given'
class MainModel(BaseModel):
"""
This is the description of the main model
"""
model_config = ConfigDict(title='Main')
foo_bar: FooBar
gender: Annotated[Union[Gender, None], Field(alias='Gender')] = None
snap: int = Field(
42,
title='The Snap',
description='this is the value of snap',
gt=30,
lt=50,
)
print(json.dumps(MainModel.model_json_schema(), indent=2))
JSON output:
{
"$defs": {
"FooBar": {
"properties": {
"count": {
"title": "Count",
"type": "integer"
},
"size": {
"anyOf": [
{
"type": "number"
},
{
"type": "null"
}
],
"default": null,
"title": "Size"
}
},
"required": [
"count"
],
"title": "FooBar",
"type": "object"
},
"Gender": {
"enum": [
"male",
"female",
"other",
"not_given"
],
"title": "Gender",
"type": "string"
}
},
"description": "This is the description of the main model",
"properties": {
"foo_bar": {
"$ref": "#/$defs/FooBar"
},
"Gender": {
"anyOf": [
{
"$ref": "#/$defs/Gender"
},
{
"type": "null"
}
],
"default": null
},
"snap": {
"default": 42,
"description": "this is the value of snap",
"exclusiveMaximum": 50,
"exclusiveMinimum": 30,
"title": "The Snap",
"type": "integer"
}
},
"required": [
"foo_bar"
],
"title": "Main",
"type": "object"
}
General notes on JSON schema generation¶
- The JSON schema for
Optional
fields indicates that the valuenull
is allowed. - The
Decimal
type is exposed in JSON schema (and serialized) as a string. - The JSON schema does not preserve
namedtuple
s asnamedtuple
s. - When they differ, you can specify whether you want the JSON schema to represent the inputs to validation or the outputs from serialization.
- Sub-models used are added to the
$defs
JSON attribute and referenced, as per the spec. - Sub-models with modifications (via the
Field
class) like a custom title, description, or default value, are recursively included instead of referenced. - The
description
for models is taken from either the docstring of the class or the argumentdescription
to theField
class. - The schema is generated by default using aliases as keys, but it can be generated using model
property names instead by calling
model_json_schema()
ormodel_dump_json()
with theby_alias=False
keyword argument. - The format of
$ref
s can be altered by callingmodel_json_schema()
ormodel_dump_json()
][pydantic.main.BaseModel.model_dump_json] with theref_template
keyword argument.
Note
Regarding the "jsonable" nature of the model_json_schema
results,
calling json.dumps(m.model_json_schema())
on some BaseModel
m
returns a valid JSON string.
Getting schema of a specified type¶
The TypeAdapter
class lets you create an object with methods for validating, serializing,
and producing JSON schemas for arbitrary types. This serves as a complete replacement for schema_of
in
Pydantic V1 (which is now deprecated).
from typing import List
from pydantic import TypeAdapter
adapter = TypeAdapter(List[int])
print(adapter.json_schema())
#> {'items': {'type': 'integer'}, 'type': 'array'}
Field customization¶
Optionally, the Field
function can be used to provide extra information about the field
and validations.
See Customizing JSON Schema for details on field parameters that are used exclusively to customize the generated JSON schema.
You can also use model config to customize JSON serialization and extra schema properties on a model. Specifically, the following config options are relevant:
Unenforced Field
constraints¶
If Pydantic finds constraints which are not being enforced, an error will be raised. If you want to force the
constraint to appear in the schema, even though it's not being checked upon parsing, you can use variadic arguments
to Field
with the raw schema attribute name:
from pydantic import BaseModel, Field, PositiveInt
try:
# this won't work since `PositiveInt` takes precedence over the
# constraints defined in `Field`, meaning they're ignored
class Model(BaseModel):
foo: PositiveInt = Field(..., lt=10)
except ValueError as e:
print(e)
# if you find yourself needing this, an alternative is to declare
# the constraints in `Field` (or you could use `conint()`)
# here both constraints will be enforced:
class ModelB(BaseModel):
# Here both constraints will be applied and the schema
# will be generated correctly
foo: int = Field(..., gt=0, lt=10)
print(ModelB.model_json_schema())
"""
{
'properties': {
'foo': {
'exclusiveMaximum': 10,
'exclusiveMinimum': 0,
'title': 'Foo',
'type': 'integer',
}
},
'required': ['foo'],
'title': 'ModelB',
'type': 'object',
}
"""
typing.Annotated Fields¶
Rather than assigning a Field
value, it can be specified in the type hint with typing.Annotated
:
from uuid import uuid4
from typing_extensions import Annotated
from pydantic import BaseModel, Field
class Foo(BaseModel):
id: Annotated[str, Field(default_factory=lambda: uuid4().hex)]
name: Annotated[str, Field(max_length=256)] = Field('Bar', title='te')
print(Foo.model_json_schema())
"""
{
'properties': {
'id': {'title': 'Id', 'type': 'string'},
'name': {
'default': 'Bar',
'maxLength': 256,
'title': 'te',
'type': 'string',
},
},
'title': 'Foo',
'type': 'object',
}
"""
Note
Defaults can be set outside Annotated
as the assigned value or with Field.default_factory
inside Annotated
.
The Field.default
argument is not supported inside Annotated
.
For versions of Python prior to 3.9, typing_extensions.Annotated
can be used.
Modifying the schema¶
Custom types (used as field_name: TheType
or field_name: Annotated[TheType, ...]
) as well as Annotated
metadata
(used as field_name: Annotated[int, SomeMetadata]
)
can modify or override the generated schema by implementing __get_pydantic_core_schema__
.
This method receives two positional arguments:
- The type annotation that corresponds to this type (so in the case of
TheType[T][int]
it would beTheType[int]
). - A handler/callback to call the next implementer of
__get_pydantic_core_schema__
.
The handler system works just like mode='wrap'
validators.
In this case the input is the type and the output is a core_schema
.
Here is an example of a custom type that overrides the generated core_schema
:
from dataclasses import dataclass
from typing import Any, Dict, List, Type
from pydantic_core import core_schema
from pydantic import BaseModel, GetCoreSchemaHandler
@dataclass
class CompressedString:
dictionary: Dict[int, str]
text: List[int]
def build(self) -> str:
return ' '.join([self.dictionary[key] for key in self.text])
@classmethod
def __get_pydantic_core_schema__(
cls, source: Type[Any], handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
assert source is CompressedString
return core_schema.no_info_after_validator_function(
cls._validate,
core_schema.str_schema(),
serialization=core_schema.plain_serializer_function_ser_schema(
cls._serialize,
info_arg=False,
return_schema=core_schema.str_schema(),
),
)
@staticmethod
def _validate(value: str) -> 'CompressedString':
inverse_dictionary: Dict[str, int] = {}
text: List[int] = []
for word in value.split(' '):
if word not in inverse_dictionary:
inverse_dictionary[word] = len(inverse_dictionary)
text.append(inverse_dictionary[word])
return CompressedString(
{v: k for k, v in inverse_dictionary.items()}, text
)
@staticmethod
def _serialize(value: 'CompressedString') -> str:
return value.build()
class MyModel(BaseModel):
value: CompressedString
print(MyModel.model_json_schema())
"""
{
'properties': {'value': {'title': 'Value', 'type': 'string'}},
'required': ['value'],
'title': 'MyModel',
'type': 'object',
}
"""
print(MyModel(value='fox fox fox dog fox'))
"""
value = CompressedString(dictionary={0: 'fox', 1: 'dog'}, text=[0, 0, 0, 1, 0])
"""
print(MyModel(value='fox fox fox dog fox').model_dump(mode='json'))
#> {'value': 'fox fox fox dog fox'}
Since Pydantic would not know how to generate a schema for CompressedString
, if you call handler(source)
in its
__get_pydantic_core_schema__
method you would get a pydantic.errors.PydanticSchemaGenerationError
error.
This will be the case for most custom types, so you almost never want to call into handler
for custom types.
The process for Annotated
metadata is much the same except that you can generally call into handler
to have
Pydantic handle generating the schema.
from dataclasses import dataclass
from typing import Any, Sequence, Type
from pydantic_core import core_schema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler, ValidationError
@dataclass
class RestrictCharacters:
alphabet: Sequence[str]
def __get_pydantic_core_schema__(
self, source: Type[Any], handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
if not self.alphabet:
raise ValueError('Alphabet may not be empty')
schema = handler(
source
) # get the CoreSchema from the type / inner constraints
if schema['type'] != 'str':
raise TypeError('RestrictCharacters can only be applied to strings')
return core_schema.no_info_after_validator_function(
self.validate,
schema,
)
def validate(self, value: str) -> str:
if any(c not in self.alphabet for c in value):
raise ValueError(
f'{value!r} is not restricted to {self.alphabet!r}'
)
return value
class MyModel(BaseModel):
value: Annotated[str, RestrictCharacters('ABC')]
print(MyModel.model_json_schema())
"""
{
'properties': {'value': {'title': 'Value', 'type': 'string'}},
'required': ['value'],
'title': 'MyModel',
'type': 'object',
}
"""
print(MyModel(value='CBA'))
#> value='CBA'
try:
MyModel(value='XYZ')
except ValidationError as e:
print(e)
"""
1 validation error for MyModel
value
Value error, 'XYZ' is not restricted to 'ABC' [type=value_error, input_value='XYZ', input_type=str]
"""
So far we have been wrapping the schema, but if you just want to modify it or ignore it you can as well.
To modify the schema, first call the handler, then mutate the result:
from typing import Any, Type
from pydantic_core import ValidationError, core_schema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
class SmallString:
def __get_pydantic_core_schema__(
self,
source: Type[Any],
handler: GetCoreSchemaHandler,
) -> core_schema.CoreSchema:
schema = handler(source)
assert schema['type'] == 'str'
schema['max_length'] = 10 # modify in place
return schema
class MyModel(BaseModel):
value: Annotated[str, SmallString()]
try:
MyModel(value='too long!!!!!')
except ValidationError as e:
print(e)
"""
1 validation error for MyModel
value
String should have at most 10 characters [type=string_too_long, input_value='too long!!!!!', input_type=str]
"""
To override the schema completely, do not call the handler and return your own
CoreSchema
:
from typing import Any, Type
from pydantic_core import ValidationError, core_schema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
class AllowAnySubclass:
def __get_pydantic_core_schema__(
self, source: Type[Any], handler: GetCoreSchemaHandler
) -> core_schema.CoreSchema:
# we can't call handler since it will fail for arbitrary types
def validate(value: Any) -> Any:
if not isinstance(value, source):
raise ValueError(
f'Expected an instance of {source}, got an instance of {type(value)}'
)
return core_schema.no_info_plain_validator_function(validate)
class Foo:
pass
class Model(BaseModel):
f: Annotated[Foo, AllowAnySubclass()]
print(Model(f=Foo()))
#> f=None
class NotFoo:
pass
try:
Model(f=NotFoo())
except ValidationError as e:
print(e)
"""
1 validation error for Model
f
Value error, Expected an instance of <class '__main__.Foo'>, got an instance of <class '__main__.NotFoo'> [type=value_error, input_value=<__main__.NotFoo object at 0x0123456789ab>, input_type=NotFoo]
"""
As seen above, annotating a field with a BaseModel
type can be used to modify or override the generated json schema.
However, if you want to take advantage of storing metadata via Annotated
, but you don't want to override the generated JSON
schema, you can use the following approach with a no-op version of __get_pydantic_core_schema__
implemented on the
metadata class:
from typing import Type
from pydantic_core import CoreSchema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
class Metadata(BaseModel):
foo: str = 'metadata!'
bar: int = 100
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Type[BaseModel], handler: GetCoreSchemaHandler
) -> CoreSchema:
if cls is not source_type:
return handler(source_type)
return super().__get_pydantic_core_schema__(source_type, handler)
class Model(BaseModel):
state: Annotated[int, Metadata()]
m = Model.model_validate({'state': 2})
print(repr(m))
#> Model(state=2)
print(m.model_fields)
"""
{
'state': FieldInfo(
annotation=int,
required=True,
metadata=[Metadata(foo='metadata!', bar=100)],
)
}
"""
JSON schema types¶
Types, custom field types, and constraints (like max_length
) are mapped to the corresponding spec formats in the
following priority order (when there is an equivalent available):
- JSON Schema Core
- JSON Schema Validation
- OpenAPI Data Types
- The standard
format
JSON field is used to define Pydantic extensions for more complexstring
sub-types.
The field schema mapping from Python or Pydantic to JSON schema is done as follows:
Top-level schema generation¶
You can also generate a top-level JSON schema that only includes a list of models and related
sub-models in its $defs
:
import json
from pydantic import BaseModel
from pydantic.json_schema import models_json_schema
class Foo(BaseModel):
a: str = None
class Model(BaseModel):
b: Foo
class Bar(BaseModel):
c: int
_, top_level_schema = models_json_schema(
[(Model, 'validation'), (Bar, 'validation')], title='My Schema'
)
print(json.dumps(top_level_schema, indent=2))
JSON output:
{
"$defs": {
"Bar": {
"properties": {
"c": {
"title": "C",
"type": "integer"
}
},
"required": [
"c"
],
"title": "Bar",
"type": "object"
},
"Foo": {
"properties": {
"a": {
"default": null,
"title": "A",
"type": "string"
}
},
"title": "Foo",
"type": "object"
},
"Model": {
"properties": {
"b": {
"$ref": "#/$defs/Foo"
}
},
"required": [
"b"
],
"title": "Model",
"type": "object"
}
},
"title": "My Schema"
}
Schema customization¶
You can customize the generated $ref
JSON location: the definitions are always stored under the key
$defs
, but a specified prefix can be used for the references.
This is useful if you need to extend or modify the JSON schema default definitions location. For example, with OpenAPI:
import json
from pydantic import BaseModel
from pydantic.type_adapter import TypeAdapter
class Foo(BaseModel):
a: int
class Model(BaseModel):
a: Foo
adapter = TypeAdapter(Model)
print(
json.dumps(
adapter.json_schema(ref_template='#/components/schemas/{model}'),
indent=2,
)
)
JSON output:
{
"$defs": {
"Foo": {
"properties": {
"a": {
"title": "A",
"type": "integer"
}
},
"required": [
"a"
],
"title": "Foo",
"type": "object"
}
},
"properties": {
"a": {
"$ref": "#/components/schemas/Foo"
}
},
"required": [
"a"
],
"title": "Model",
"type": "object"
}
It's also possible to extend or override the generated JSON schema in a model by implementing
__get_pydantic_json_schema__
on your model.
For example, you could add examples
to the JSON schema:
import json
from pydantic_core import CoreSchema
from pydantic import BaseModel, GetJsonSchemaHandler
from pydantic.json_schema import JsonSchemaValue
class Person(BaseModel):
name: str
age: int
@classmethod
def __get_pydantic_json_schema__(
cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
json_schema = handler(core_schema)
json_schema = handler.resolve_ref_schema(json_schema)
json_schema['examples'] = [
{
'name': 'John Doe',
'age': 25,
}
]
return json_schema
print(json.dumps(Person.model_json_schema(), indent=2))
JSON output:
{
"examples": [
{
"age": 25,
"name": "John Doe"
}
],
"properties": {
"name": {
"title": "Name",
"type": "string"
},
"age": {
"title": "Age",
"type": "integer"
}
},
"required": [
"name",
"age"
],
"title": "Person",
"type": "object"
}
Note that you must return a schema, even if you are just mutating it in place.
Customizing the JSON schema generation process¶
API Documentation
If you need custom schema generation, you can use a schema_generator
, modifying the
GenerateJsonSchema
class as necessary for your application.
The various methods that can be used to produce JSON schema accept a keyword argument schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema
, and you can pass your custom subclass to these methods in order to use your own approach to generating JSON schema.
GenerateJsonSchema
implements the translation of a type's pydantic-core
schema into a JSON schema.
By design, this class breaks the JSON schema generation process into smaller methods that can be easily overridden in
subclasses to modify the "global" approach to generating JSON schema.
from pydantic import BaseModel
from pydantic.json_schema import GenerateJsonSchema
class MyGenerateJsonSchema(GenerateJsonSchema):
def generate(self, schema, mode='validation'):
json_schema = super().generate(schema, mode=mode)
json_schema['title'] = 'Customize title'
json_schema['$schema'] = self.schema_dialect
return json_schema
class MyModel(BaseModel):
x: int
print(MyModel.model_json_schema(schema_generator=MyGenerateJsonSchema))
"""
{
'properties': {'x': {'title': 'X', 'type': 'integer'}},
'required': ['x'],
'title': 'Customize title',
'type': 'object',
'$schema': 'https://json-schema.org/draft/2020-12/schema',
}
"""
Below is an approach you can use to exclude any fields from the schema that don't have valid json schemas:
from typing import Callable
from pydantic_core import PydanticOmit, core_schema
from pydantic import BaseModel
from pydantic.json_schema import GenerateJsonSchema, JsonSchemaValue
class MyGenerateJsonSchema(GenerateJsonSchema):
def handle_invalid_for_json_schema(
self, schema: core_schema.CoreSchema, error_info: str
) -> JsonSchemaValue:
raise PydanticOmit
def example_callable():
return 1
class Example(BaseModel):
name: str = 'example'
function: Callable = example_callable
instance_example = Example()
validation_schema = instance_example.model_json_schema(
schema_generator=MyGenerateJsonSchema, mode='validation'
)
print(validation_schema)
"""
{
'properties': {
'name': {'default': 'example', 'title': 'Name', 'type': 'string'}
},
'title': 'Example',
'type': 'object',
}
"""