TypeAdapter
You may have types that are not BaseModel
s that you want to validate data against.
Or you may want to validate a List[SomeModel]
, or dump it to JSON.
For use cases like this, Pydantic provides TypeAdapter
,
which can be used for type validation, serialization, and JSON schema generation without creating a
BaseModel
.
A TypeAdapter
instance exposes some of the functionality from
BaseModel
instance methods for types that do not have such methods
(such as dataclasses, primitive types, and more):
from typing import List
from typing_extensions import TypedDict
from pydantic import TypeAdapter, ValidationError
class User(TypedDict):
name: str
id: int
UserListValidator = TypeAdapter(List[User])
print(repr(UserListValidator.validate_python([{'name': 'Fred', 'id': '3'}])))
#> [{'name': 'Fred', 'id': 3}]
try:
UserListValidator.validate_python(
[{'name': 'Fred', 'id': 'wrong', 'other': 'no'}]
)
except ValidationError as e:
print(e)
'''
1 validation error for list[typed-dict]
0.id
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='wrong', input_type=str]
'''
Note
Despite some overlap in use cases with RootModel
,
TypeAdapter
should not be used as a type annotation for
specifying fields of a BaseModel
, etc.
Parsing data into a specified type¶
TypeAdapter
can be used to apply the parsing logic to populate Pydantic models
in a more ad-hoc way. This function behaves similarly to
BaseModel.model_validate
,
but works with arbitrary Pydantic-compatible types.
This is especially useful when you want to parse results into a type that is not a direct subclass of
BaseModel
. For example:
from typing import List
from pydantic import BaseModel, TypeAdapter
class Item(BaseModel):
id: int
name: str
# `item_data` could come from an API call, eg., via something like:
# item_data = requests.get('https://my-api.com/items').json()
item_data = [{'id': 1, 'name': 'My Item'}]
items = TypeAdapter(List[Item]).validate_python(item_data)
print(items)
#> [Item(id=1, name='My Item')]
TypeAdapter
is capable of parsing data into any of the types Pydantic can
handle as fields of a BaseModel
.
TypeAdapter ¶
TypeAdapter(type, *, config=None, _parent_depth=2)
Bases: Generic[T]
Type adapters provide a flexible way to perform validation and serialization based on a Python type.
A TypeAdapter
instance exposes some of the functionality from BaseModel
instance methods
for types that do not have such methods (such as dataclasses, primitive types, and more).
Note that TypeAdapter
is not an actual type, so you cannot use it in type annotations.
Attributes:
Name | Type | Description |
---|---|---|
core_schema |
The core schema for the type. |
|
validator |
SchemaValidator
|
The schema validator for the type. |
serializer |
The schema serializer for the type. |
Source code in pydantic/type_adapter.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
validate_python ¶
validate_python(
__object,
*,
strict=None,
from_attributes=None,
context=None
)
Validate a Python object against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__object |
Any
|
The Python object to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
from_attributes |
bool | None
|
Whether to extract data from object attributes. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
validate_json ¶
validate_json(__data, *, strict=None, context=None)
Validate a JSON string or bytes against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__data |
str | bytes
|
The JSON data to validate against the model. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
validate_strings ¶
validate_strings(__obj, *, strict=None, context=None)
Validate object contains string data against the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__obj |
Any
|
The object contains string data to validate. |
required |
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to use during validation. |
None
|
Returns:
Type | Description |
---|---|
T
|
The validated object. |
Source code in pydantic/type_adapter.py
300 301 302 303 304 305 306 307 308 309 310 311 |
|
get_default_value ¶
get_default_value(*, strict=None, context=None)
Get the default value for the wrapped type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strict |
bool | None
|
Whether to strictly check types. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
Some[T] | None
|
The default value wrapped in a |
Source code in pydantic/type_adapter.py
313 314 315 316 317 318 319 320 321 322 323 |
|
dump_python ¶
dump_python(
__instance,
*,
mode="python",
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Dump an instance of the adapted type to a Python object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__instance |
T
|
The Python object to serialize. |
required |
mode |
Literal['json', 'python']
|
The output format. |
'python'
|
include |
IncEx | None
|
Fields to include in the output. |
None
|
exclude |
IncEx | None
|
Fields to exclude from the output. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with None values. |
False
|
round_trip |
bool
|
Whether to output the serialized data in a way that is compatible with deserialization. |
False
|
warnings |
bool
|
Whether to display serialization warnings. |
True
|
Returns:
Type | Description |
---|---|
Any
|
The serialized object. |
Source code in pydantic/type_adapter.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
|
dump_json ¶
dump_json(
__instance,
*,
indent=None,
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Serialize an instance of the adapted type to JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__instance |
T
|
The instance to be serialized. |
required |
indent |
int | None
|
Number of spaces for JSON indentation. |
None
|
include |
IncEx | None
|
Fields to include. |
None
|
exclude |
IncEx | None
|
Fields to exclude. |
None
|
by_alias |
bool
|
Whether to use alias names for field names. |
False
|
exclude_unset |
bool
|
Whether to exclude unset fields. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields with default values. |
False
|
exclude_none |
bool
|
Whether to exclude fields with a value of |
False
|
round_trip |
bool
|
Whether to serialize and deserialize the instance to ensure round-tripping. |
False
|
warnings |
bool
|
Whether to emit serialization warnings. |
True
|
Returns:
Type | Description |
---|---|
bytes
|
The JSON representation of the given instance as bytes. |
Source code in pydantic/type_adapter.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
json_schema ¶
json_schema(
*,
by_alias=True,
ref_template=DEFAULT_REF_TEMPLATE,
schema_generator=GenerateJsonSchema,
mode="validation"
)
Generate a JSON schema for the adapted type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by_alias |
bool
|
Whether to use alias names for field names. |
True
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
mode |
JsonSchemaMode
|
The mode to use for schema generation. |
'validation'
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The JSON schema for the model as a dictionary. |
Source code in pydantic/type_adapter.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
json_schemas
staticmethod
¶
json_schemas(
__inputs,
*,
by_alias=True,
title=None,
description=None,
ref_template=DEFAULT_REF_TEMPLATE,
schema_generator=GenerateJsonSchema
)
Generate a JSON schema including definitions from multiple type adapters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__inputs |
Iterable[tuple[JsonSchemaKeyT, JsonSchemaMode, TypeAdapter[Any]]]
|
Inputs to schema generation. The first two items will form the keys of the (first) output mapping; the type adapters will provide the core schemas that get converted into definitions in the output JSON schema. |
required |
by_alias |
bool
|
Whether to use alias names. |
True
|
title |
str | None
|
The title for the schema. |
None
|
description |
str | None
|
The description for the schema. |
None
|
ref_template |
str
|
The format string used for generating $ref strings. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The generator class used for creating the schema. |
GenerateJsonSchema
|
Returns:
Type | Description |
---|---|
tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]
|
A tuple where:
|
Source code in pydantic/type_adapter.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
|