Dataclasses
API Documentation
If you don't want to use Pydantic's BaseModel
you can instead get the same data validation on standard
dataclasses (introduced in Python 3.7).
from datetime import datetime
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
signup_ts: datetime = None
user = User(id='42', signup_ts='2032-06-21T12:00')
print(user)
"""
User(id=42, name='John Doe', signup_ts=datetime.datetime(2032, 6, 21, 12, 0))
"""
Note
Keep in mind that pydantic.dataclasses.dataclass
is not a replacement for pydantic.BaseModel
.
pydantic.dataclasses.dataclass
provides a similar functionality to dataclasses.dataclass
with the addition of
Pydantic validation.
There are cases where subclassing pydantic.BaseModel
is the better choice.
For more information and discussion see pydantic/pydantic#710.
Some differences between Pydantic dataclasses and BaseModel
include:
- How initialization hooks work
- JSON dumping
You can use all the standard Pydantic field types. Note, however, that arguments passed to constructor will be copied in order to perform validation and, where necessary coercion.
To perform validation or generate a JSON schema on a Pydantic dataclass, you should now wrap the dataclass
with a TypeAdapter
and make use of its methods.
Fields that require a default_factory
can be specified by either a pydantic.Field
or a dataclasses.field
.
import dataclasses
from typing import List, Optional
from pydantic import Field, TypeAdapter
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
friends: List[int] = dataclasses.field(default_factory=lambda: [0])
age: Optional[int] = dataclasses.field(
default=None,
metadata=dict(title='The age of the user', description='do not lie!'),
)
height: Optional[int] = Field(None, title='The height in cm', ge=50, le=300)
user = User(id='42')
print(TypeAdapter(User).json_schema())
"""
{
'properties': {
'id': {'title': 'Id', 'type': 'integer'},
'name': {'default': 'John Doe', 'title': 'Name', 'type': 'string'},
'friends': {
'items': {'type': 'integer'},
'title': 'Friends',
'type': 'array',
},
'age': {
'anyOf': [{'type': 'integer'}, {'type': 'null'}],
'default': None,
'description': 'do not lie!',
'title': 'The age of the user',
},
'height': {
'anyOf': [
{'maximum': 300, 'minimum': 50, 'type': 'integer'},
{'type': 'null'},
],
'default': None,
'title': 'The height in cm',
},
},
'required': ['id'],
'title': 'User',
'type': 'object',
}
"""
pydantic.dataclasses.dataclass
's arguments are the same as the standard decorator, except one extra
keyword argument config
which has the same meaning as model_config.
Warning
After v1.2, The Mypy plugin must be installed to type check pydantic dataclasses.
For more information about combining validators with dataclasses, see dataclass validators.
Dataclass config¶
If you want to modify the config
like you would with a BaseModel
, you have two options:
- Apply config to the dataclass decorator as a dict
- Use
ConfigDict
as the config
from pydantic import ConfigDict
from pydantic.dataclasses import dataclass
# Option 1 - use directly a dict
# Note: `mypy` will still raise typo error
@dataclass(config=dict(validate_assignment=True)) # (1)!
class MyDataclass1:
a: int
# Option 2 - use `ConfigDict`
# (same as before at runtime since it's a `TypedDict` but with intellisense)
@dataclass(config=ConfigDict(validate_assignment=True))
class MyDataclass2:
a: int
- You can read more about
validate_assignment
in model_config.
Note
Pydantic dataclasses do not support extra='allow'
, where extra fields passed
to the initializer would be stored as extra attributes on the dataclass.
extra='ignore'
is still supported for the purpose of ignoring
unexpected fields while parsing data; they just won't be stored on the instance.
Nested dataclasses¶
Nested dataclasses are supported both in dataclasses and normal models.
from pydantic import AnyUrl
from pydantic.dataclasses import dataclass
@dataclass
class NavbarButton:
href: AnyUrl
@dataclass
class Navbar:
button: NavbarButton
navbar = Navbar(button={'href': 'https://example.com'})
print(navbar)
#> Navbar(button=NavbarButton(href=Url('https://example.com/')))
When used as fields, dataclasses (Pydantic or vanilla) should use dicts as validation inputs.
Generic dataclasses¶
Pydantic supports generic dataclasses, including those with type variables.
from typing import Generic, TypeVar
from pydantic import TypeAdapter
from pydantic.dataclasses import dataclass
T = TypeVar('T')
@dataclass
class GenericDataclass(Generic[T]):
x: T
validator = TypeAdapter(GenericDataclass)
assert validator.validate_python({'x': None}).x is None
assert validator.validate_python({'x': 1}).x == 1
assert validator.validate_python({'x': 'a'}).x == 'a'
Note that, if you use the dataclass as a field of a BaseModel
or via FastAPI you don't need a TypeAdapter
.
Stdlib dataclasses and Pydantic dataclasses¶
Inherit from stdlib dataclasses¶
Stdlib dataclasses (nested or not) can also be inherited and Pydantic will automatically validate all the inherited fields.
import dataclasses
import pydantic
@dataclasses.dataclass
class Z:
z: int
@dataclasses.dataclass
class Y(Z):
y: int = 0
@pydantic.dataclasses.dataclass
class X(Y):
x: int = 0
foo = X(x=b'1', y='2', z='3')
print(foo)
#> X(z=3, y=2, x=1)
try:
X(z='pika')
except pydantic.ValidationError as e:
print(e)
"""
1 validation error for X
z
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='pika', input_type=str]
"""
Use of stdlib dataclasses with BaseModel
¶
Bear in mind that stdlib dataclasses (nested or not) are automatically converted into Pydantic
dataclasses when mixed with BaseModel
! Furthermore the generated Pydantic dataclass will have
the exact same configuration (order
, frozen
, ...) as the original one.
import dataclasses
from datetime import datetime
from typing import Optional
from pydantic import BaseModel, ValidationError
@dataclasses.dataclass(frozen=True)
class User:
name: str
@dataclasses.dataclass
class File:
filename: str
last_modification_time: Optional[datetime] = None
class Foo(BaseModel):
file: File
user: Optional[User] = None
file = File(
filename=['not', 'a', 'string'],
last_modification_time='2020-01-01T00:00',
) # nothing is validated as expected
print(file)
"""
File(filename=['not', 'a', 'string'], last_modification_time='2020-01-01T00:00')
"""
try:
Foo(file=file)
except ValidationError as e:
print(e)
"""
1 validation error for Foo
file.filename
Input should be a valid string [type=string_type, input_value=['not', 'a', 'string'], input_type=list]
"""
foo = Foo(file=File(filename='myfile'), user=User(name='pika'))
try:
foo.user.name = 'bulbi'
except dataclasses.FrozenInstanceError as e:
print(e)
#> cannot assign to field 'name'
Use custom types¶
Since stdlib dataclasses are automatically converted to add validation, using
custom types may cause some unexpected behavior.
In this case you can simply add arbitrary_types_allowed
in the config!
import dataclasses
from pydantic import BaseModel, ConfigDict
from pydantic.errors import PydanticSchemaGenerationError
class ArbitraryType:
def __init__(self, value):
self.value = value
def __repr__(self):
return f'ArbitraryType(value={self.value!r})'
@dataclasses.dataclass
class DC:
a: ArbitraryType
b: str
# valid as it is a builtin dataclass without validation
my_dc = DC(a=ArbitraryType(value=3), b='qwe')
try:
class Model(BaseModel):
dc: DC
other: str
# invalid as it is now a pydantic dataclass
Model(dc=my_dc, other='other')
except PydanticSchemaGenerationError as e:
print(e.message)
"""
Unable to generate pydantic-core schema for <class '__main__.ArbitraryType'>. Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it.
If you got this error by calling handler(<some type>) within `__get_pydantic_core_schema__` then you likely need to call `handler.generate_schema(<some type>)` since we do not call `__get_pydantic_core_schema__` on `<some type>` otherwise to avoid infinite recursion.
"""
class Model(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
dc: DC
other: str
m = Model(dc=my_dc, other='other')
print(repr(m))
#> Model(dc=DC(a=ArbitraryType(value=3), b='qwe'), other='other')
Initialization hooks¶
When you initialize a dataclass, it is possible to execute code before or after validation
with the help of the @model_validator
decorator mode
parameter.
from typing import Any, Dict
from pydantic import model_validator
from pydantic.dataclasses import dataclass
@dataclass
class Birth:
year: int
month: int
day: int
@dataclass
class User:
birth: Birth
@model_validator(mode='before')
def pre_root(cls, values: Dict[str, Any]) -> Dict[str, Any]:
print(f'First: {values}')
"""
First: ArgsKwargs((), {'birth': {'year': 1995, 'month': 3, 'day': 2}})
"""
return values
@model_validator(mode='after')
def post_root(self) -> 'User':
print(f'Third: {self}')
#> Third: User(birth=Birth(year=1995, month=3, day=2))
return self
def __post_init__(self):
print(f'Second: {self.birth}')
#> Second: Birth(year=1995, month=3, day=2)
user = User(**{'birth': {'year': 1995, 'month': 3, 'day': 2}})
The __post_init__
in Pydantic dataclasses is called in the middle of validators.
Here is the order:
model_validator(mode='before')
field_validator(mode='before')
field_validator(mode='after')
- Inner validators. e.g. validation for types like
int
,str
, ... __post_init__
.model_validator(mode='after')
from dataclasses import InitVar
from pathlib import Path
from typing import Optional
from pydantic.dataclasses import dataclass
@dataclass
class PathData:
path: Path
base_path: InitVar[Optional[Path]]
def __post_init__(self, base_path):
print(f'Received path={self.path!r}, base_path={base_path!r}')
#> Received path=PosixPath('world'), base_path=PosixPath('/hello')
if base_path is not None:
self.path = base_path / self.path
path_data = PathData('world', base_path='/hello')
# Received path='world', base_path='/hello'
assert path_data.path == Path('/hello/world')
Difference with stdlib dataclasses¶
Note that the dataclasses.dataclass
from Python stdlib implements only the __post_init__
method since it doesn't run a validation step.
JSON dumping¶
Pydantic dataclasses do not feature a .model_dump_json()
function. To dump them as JSON, you will need to
make use of the RootModel as follows:
import dataclasses
from typing import List
from pydantic import RootModel
from pydantic.dataclasses import dataclass
@dataclass
class User:
id: int
name: str = 'John Doe'
friends: List[int] = dataclasses.field(default_factory=lambda: [0])
user = User(id='42')
print(RootModel[User](User(id='42')).model_dump_json(indent=4))
JSON output:
{
"id": 42,
"name": "John Doe",
"friends": [
0
]
}