pydantic
Logic for creating models.
BaseModel ¶
BaseModel(__pydantic_self__, **data)
A base model class for creating Pydantic models.
Attributes:
Name | Type | Description |
---|---|---|
model_config |
ConfigDict
|
Configuration settings for the model. |
model_fields |
dict[str, FieldInfo]
|
Metadata about the fields defined on the model.
This replaces |
__class_vars__ |
set[str]
|
The names of classvars defined on the model. |
__private_attributes__ |
dict[str, ModelPrivateAttr]
|
Metadata about the private attributes of the model. |
__signature__ |
Signature
|
The signature for instantiating the model. |
__pydantic_complete__ |
bool
|
Whether model building is completed, or if there are still undefined fields. |
__pydantic_core_schema__ |
CoreSchema
|
The pydantic-core schema used to build the SchemaValidator and SchemaSerializer. |
__pydantic_custom_init__ |
bool
|
Whether the model has a custom |
__pydantic_decorators__ |
_decorators.DecoratorInfos
|
Metadata containing the decorators defined on the model.
This replaces |
__pydantic_generic_metadata__ |
_generics.PydanticGenericMetadata
|
Metadata for generic models; contains data used for a similar purpose to args, origin, parameters in typing-module generics. May eventually be replaced by these. |
__pydantic_parent_namespace__ |
dict[str, Any] | None
|
Parent namespace of the model, used for automatic rebuilding of models. |
__pydantic_post_init__ |
None | Literal['model_post_init']
|
The name of the post-init method for the model, if defined. |
__pydantic_root_model__ |
bool
|
Whether the model is a |
__pydantic_serializer__ |
SchemaSerializer
|
The pydantic-core SchemaSerializer used to dump instances of the model. |
__pydantic_validator__ |
SchemaValidator
|
The pydantic-core SchemaValidator used to validate instances of the model. |
__pydantic_extra__ |
dict[str, Any] | None
|
An instance attribute with the values of extra fields from validation when
|
__pydantic_fields_set__ |
set[str]
|
An instance attribute with the names of fields explicitly specified during validation. |
__pydantic_private__ |
dict[str, Any] | None
|
Instance attribute with the values of private attributes set on the model instance. |
Raises ValidationError if the input data cannot be parsed to form a valid model.
Uses __pydantic_self__
instead of the more common self
for the first arg to
allow self
as a field name.
Source code in pydantic/main.py
140 141 142 143 144 145 146 147 148 149 150 |
|
model_computed_fields
property
¶
model_computed_fields: dict[str, ComputedFieldInfo]
Get the computed fields of this model instance.
Returns:
Type | Description |
---|---|
dict[str, ComputedFieldInfo]
|
A dictionary of computed field names and their corresponding |
model_extra
property
¶
model_extra: dict[str, Any] | None
Get extra fields set during validation.
Returns:
Type | Description |
---|---|
dict[str, Any] | None
|
A dictionary of extra fields, or |
model_fields_set
property
¶
model_fields_set: set[str]
Returns the set of fields that have been set on this model instance.
Returns:
Type | Description |
---|---|
set[str]
|
A set of strings representing the fields that have been set, i.e. that were not filled from defaults. |
copy ¶
copy(
*, include=None, exclude=None, update=None, deep=False
)
Returns a copy of the model.
This method is now deprecated; use model_copy
instead. If you need include
or exclude
, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include |
AbstractSetIntStr | MappingIntStrAny | None
|
Optional set or mapping specifying which fields to include in the copied model. |
None
|
exclude |
AbstractSetIntStr | MappingIntStrAny | None
|
Optional set or mapping specifying which fields to exclude in the copied model. |
None
|
update |
typing.Dict[str, Any] | None
|
Optional dictionary of field-value pairs to override field values in the copied model. |
None
|
deep |
bool
|
If True, the values of fields that are Pydantic models will be deep copied. |
False
|
Returns:
Type | Description |
---|---|
Model
|
A copy of the model with included, excluded and updated fields as specified. |
Source code in pydantic/main.py
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
|
model_construct
classmethod
¶
model_construct(_fields_set=None, **values)
Creates a new instance of the Model
class with validated data.
Creates a new model setting __dict__
and __pydantic_fields_set__
from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = 'allow'
was set since it adds all passed values
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_fields_set |
set[str] | None
|
The set of field names accepted for the Model instance. |
None
|
values |
Any
|
Trusted or pre-validated data dictionary. |
{}
|
Returns:
Type | Description |
---|---|
Model
|
A new instance of the |
Source code in pydantic/main.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
model_copy ¶
model_copy(*, update=None, deep=False)
Returns a copy of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
update |
dict[str, Any] | None
|
Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
None
|
deep |
bool
|
Set to |
False
|
Returns:
Type | Description |
---|---|
Model
|
New model instance. |
Source code in pydantic/main.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
model_dump ¶
model_dump(
*,
mode="python",
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Usage Documentation
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mode |
Literal['json', 'python'] | str
|
The mode in which |
'python'
|
include |
IncEx
|
A list of fields to include in the output. |
None
|
exclude |
IncEx
|
A list of fields to exclude from the output. |
None
|
by_alias |
bool
|
Whether to use the field's alias in the dictionary key if defined. |
False
|
exclude_unset |
bool
|
Whether to exclude fields that are unset or None from the output. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields that are set to their default value from the output. |
False
|
exclude_none |
bool
|
Whether to exclude fields that have a value of |
False
|
round_trip |
bool
|
Whether to enable serialization and deserialization round-trip support. |
False
|
warnings |
bool
|
Whether to log warnings when invalid fields are encountered. |
True
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A dictionary representation of the model. |
Source code in pydantic/main.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
model_dump_json ¶
model_dump_json(
*,
indent=None,
include=None,
exclude=None,
by_alias=False,
exclude_unset=False,
exclude_defaults=False,
exclude_none=False,
round_trip=False,
warnings=True
)
Usage Documentation
Generates a JSON representation of the model using Pydantic's to_json
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
indent |
int | None
|
Indentation to use in the JSON output. If None is passed, the output will be compact. |
None
|
include |
IncEx
|
Field(s) to include in the JSON output. Can take either a string or set of strings. |
None
|
exclude |
IncEx
|
Field(s) to exclude from the JSON output. Can take either a string or set of strings. |
None
|
by_alias |
bool
|
Whether to serialize using field aliases. |
False
|
exclude_unset |
bool
|
Whether to exclude fields that have not been explicitly set. |
False
|
exclude_defaults |
bool
|
Whether to exclude fields that have the default value. |
False
|
exclude_none |
bool
|
Whether to exclude fields that have a value of |
False
|
round_trip |
bool
|
Whether to use serialization/deserialization between JSON and class instance. |
False
|
warnings |
bool
|
Whether to show any warnings that occurred during serialization. |
True
|
Returns:
Type | Description |
---|---|
str
|
A JSON string representation of the model. |
Source code in pydantic/main.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
model_json_schema
classmethod
¶
model_json_schema(
by_alias=True,
ref_template=DEFAULT_REF_TEMPLATE,
schema_generator=GenerateJsonSchema,
mode="validation",
)
Generates a JSON schema for a model class.
To override the logic used to generate the JSON schema, you can create a subclass of GenerateJsonSchema
with your desired modifications, then override this method on a custom base class and set the default
value of schema_generator
to be your subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by_alias |
bool
|
Whether to use attribute aliases or not. |
True
|
ref_template |
str
|
The reference template. |
DEFAULT_REF_TEMPLATE
|
schema_generator |
type[GenerateJsonSchema]
|
The JSON schema generator. |
GenerateJsonSchema
|
mode |
JsonSchemaMode
|
The mode in which to generate the schema. |
'validation'
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The JSON schema for the given model class. |
Source code in pydantic/main.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
model_parametrized_name
classmethod
¶
model_parametrized_name(params)
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
tuple[type[Any], ...]
|
Tuple of types of the class. Given a generic class
|
required |
Returns:
Type | Description |
---|---|
str
|
String representing the new class where |
Raises:
Type | Description |
---|---|
TypeError
|
Raised when trying to generate concrete names for non-generic models. |
Source code in pydantic/main.py
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
model_post_init ¶
model_post_init(__context)
Override this method to perform additional initialization after __init__
and model_construct
.
This is useful if you want to do some validation that requires the entire model to be initialized.
Source code in pydantic/main.py
403 404 405 406 407 |
|
model_rebuild
classmethod
¶
model_rebuild(
*,
force=False,
raise_errors=True,
_parent_namespace_depth=2,
_types_namespace=None
)
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
force |
bool
|
Whether to force the rebuilding of the model schema, defaults to |
False
|
raise_errors |
bool
|
Whether to raise errors, defaults to |
True
|
_parent_namespace_depth |
int
|
The depth level of the parent namespace, defaults to 2. |
2
|
_types_namespace |
dict[str, Any] | None
|
The types namespace, defaults to |
None
|
Returns:
Type | Description |
---|---|
bool | None
|
Returns |
bool | None
|
If rebuilding was required, returns |
Source code in pydantic/main.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
|
model_validate
classmethod
¶
model_validate(
obj, *, strict=None, from_attributes=None, context=None
)
Validate a pydantic model instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj |
Any
|
The object to validate. |
required |
strict |
bool | None
|
Whether to raise an exception on invalid fields. |
None
|
from_attributes |
bool | None
|
Whether to extract data from object attributes. |
None
|
context |
dict[str, Any] | None
|
Additional context to pass to the validator. |
None
|
Raises:
Type | Description |
---|---|
ValidationError
|
If the object could not be validated. |
Returns:
Type | Description |
---|---|
Model
|
The validated model instance. |
Source code in pydantic/main.py
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
|
model_validate_json
classmethod
¶
model_validate_json(
json_data, *, strict=None, context=None
)
Validate the given JSON data against the Pydantic model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
json_data |
str | bytes | bytearray
|
The JSON data to validate. |
required |
strict |
bool | None
|
Whether to enforce types strictly. |
None
|
context |
dict[str, Any] | None
|
Extra variables to pass to the validator. |
None
|
Returns:
Type | Description |
---|---|
Model
|
The validated Pydantic model. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in pydantic/main.py
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
create_model ¶
create_model(
__model_name,
*,
__config__=None,
__base__=None,
__module__=__name__,
__validators__=None,
__cls_kwargs__=None,
__slots__=None,
**field_definitions
)
Dynamically creates and returns a new Pydantic model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
__model_name |
str
|
The name of the newly created model. |
required |
__config__ |
ConfigDict | None
|
The configuration of the new model. |
None
|
__base__ |
type[Model] | tuple[type[Model], ...] | None
|
The base class for the new model. |
None
|
__module__ |
str
|
The name of the module that the model belongs to. |
__name__
|
__validators__ |
dict[str, AnyClassMethod] | None
|
A dictionary of methods that validate fields. |
None
|
__cls_kwargs__ |
dict[str, Any] | None
|
A dictionary of keyword arguments for class creation. |
None
|
__slots__ |
tuple[str, ...] | None
|
Deprecated. Should not be passed to |
None
|
**field_definitions |
Any
|
Attributes of the new model. They should be passed in the format:
|
{}
|
Returns:
Type | Description |
---|---|
type[Model]
|
The newly created model. |
Raises:
Type | Description |
---|---|
PydanticUserError
|
If |
Source code in pydantic/main.py
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 |
|