Field Types
Where possible pydantic uses standard library types to define fields, thus smoothing the learning curve. For many useful applications, however, no standard library type exists, so pydantic implements many commonly used types.
If no existing type suits your purpose you can also implement your own pydantic-compatible types with custom properties and validation.
Standard Library Types¶
pydantic supports many common types from the Python standard library. If you need stricter processing see Strict Types; if you need to constrain the values allowed (e.g. to require a positive int) see Constrained Types.
None
,type(None)
orLiteral[None]
(equivalent according to PEP 484)- allows only
None
value bool
- see Booleans below for details on how bools are validated and what values are permitted
int
- pydantic uses
int(v)
to coerce types to anint
; see this warning on loss of information during data conversion float
- similarly,
float(v)
is used to coerce values to floats str
- strings are accepted as-is,
int
float
andDecimal
are coerced usingstr(v)
,bytes
andbytearray
are converted usingv.decode()
, enums inheriting fromstr
are converted usingv.value
, and all other types cause an error bytes
bytes
are accepted as-is,bytearray
is converted usingbytes(v)
,str
are converted usingv.encode()
, andint
,float
, andDecimal
are coerced usingstr(v).encode()
list
- allows
list
,tuple
,set
,frozenset
,deque
, or generators and casts to a list; seetyping.List
below for sub-type constraints tuple
- allows
list
,tuple
,set
,frozenset
,deque
, or generators and casts to a tuple; seetyping.Tuple
below for sub-type constraints dict
dict(v)
is used to attempt to convert a dictionary; seetyping.Dict
below for sub-type constraintsset
- allows
list
,tuple
,set
,frozenset
,deque
, or generators and casts to a set; seetyping.Set
below for sub-type constraints frozenset
- allows
list
,tuple
,set
,frozenset
,deque
, or generators and casts to a frozen set; seetyping.FrozenSet
below for sub-type constraints deque
- allows
list
,tuple
,set
,frozenset
,deque
, or generators and casts to a deque; seetyping.Deque
below for sub-type constraints datetime.date
- see Datetime Types below for more detail on parsing and validation
datetime.time
- see Datetime Types below for more detail on parsing and validation
datetime.datetime
- see Datetime Types below for more detail on parsing and validation
datetime.timedelta
- see Datetime Types below for more detail on parsing and validation
typing.Any
- allows any value including
None
, thus anAny
field is optional typing.Annotated
- allows wrapping another type with arbitrary metadata, as per PEP-593. The
Annotated
hint may contain a single call to theField
function, but otherwise the additional metadata is ignored and the root type is used. typing.TypeVar
- constrains the values allowed based on
constraints
orbound
, see TypeVar typing.Union
- see Unions below for more detail on parsing and validation
typing.Optional
Optional[x]
is simply short hand forUnion[x, None]
; see Unions below for more detail on parsing and validation and Required Fields for details about required fields that can receiveNone
as a value.typing.List
- see Typing Iterables below for more detail on parsing and validation
typing.Tuple
- see Typing Iterables below for more detail on parsing and validation
subclass of typing.NamedTuple
- Same as
tuple
but instantiates with the given namedtuple and validates fields since they are annotated. See Annotated Types below for more detail on parsing and validation subclass of collections.namedtuple
- Same as
subclass of typing.NamedTuple
but all fields will have typeAny
since they are not annotated typing.Dict
- see Typing Iterables below for more detail on parsing and validation
subclass of typing.TypedDict
- Same as
dict
but pydantic will validate the dictionary since keys are annotated. See Annotated Types below for more detail on parsing and validation typing.Set
- see Typing Iterables below for more detail on parsing and validation
typing.FrozenSet
- see Typing Iterables below for more detail on parsing and validation
typing.Deque
- see Typing Iterables below for more detail on parsing and validation
typing.Sequence
- see Typing Iterables below for more detail on parsing and validation
typing.Iterable
- this is reserved for iterables that shouldn't be consumed. See Infinite Generators below for more detail on parsing and validation
typing.Type
- see Type below for more detail on parsing and validation
typing.Callable
- see Callable below for more detail on parsing and validation
typing.Pattern
- will cause the input value to be passed to
re.compile(v)
to create a regex pattern ipaddress.IPv4Address
- simply uses the type itself for validation by passing the value to
IPv4Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv4Interface
- simply uses the type itself for validation by passing the value to
IPv4Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv4Network
- simply uses the type itself for validation by passing the value to
IPv4Network(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Address
- simply uses the type itself for validation by passing the value to
IPv6Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Interface
- simply uses the type itself for validation by passing the value to
IPv6Interface(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Network
- simply uses the type itself for validation by passing the value to
IPv6Network(v)
; see Pydantic Types for other custom IP address types enum.Enum
- checks that the value is a valid Enum instance
subclass of enum.Enum
- checks that the value is a valid member of the enum; see Enums and Choices for more details
enum.IntEnum
- checks that the value is a valid IntEnum instance
subclass of enum.IntEnum
- checks that the value is a valid member of the integer enum; see Enums and Choices for more details
decimal.Decimal
- pydantic attempts to convert the value to a string, then passes the string to
Decimal(v)
pathlib.Path
- simply uses the type itself for validation by passing the value to
Path(v)
; see Pydantic Types for other more strict path types uuid.UUID
- strings and bytes (converted to strings) are passed to
UUID(v)
, with a fallback toUUID(bytes=v)
forbytes
andbytearray
; see Pydantic Types for other stricter UUID types ByteSize
- converts a bytes string with units to bytes
Typing Iterables¶
pydantic uses standard library typing
types as defined in PEP 484 to define complex objects.
from typing import (
Deque, Dict, FrozenSet, List, Optional, Sequence, Set, Tuple, Union
)
from pydantic import BaseModel
class Model(BaseModel):
simple_list: list = None
list_of_ints: List[int] = None
simple_tuple: tuple = None
tuple_of_different_types: Tuple[int, float, str, bool] = None
simple_dict: dict = None
dict_str_float: Dict[str, float] = None
simple_set: set = None
set_bytes: Set[bytes] = None
frozen_set: FrozenSet[int] = None
str_or_bytes: Union[str, bytes] = None
none_or_str: Optional[str] = None
sequence_of_ints: Sequence[int] = None
compound: Dict[Union[str, bytes], List[Set[int]]] = None
deque: Deque[int] = None
print(Model(simple_list=['1', '2', '3']).simple_list)
#> ['1', '2', '3']
print(Model(list_of_ints=['1', '2', '3']).list_of_ints)
#> [1, 2, 3]
print(Model(simple_dict={'a': 1, b'b': 2}).simple_dict)
#> {'a': 1, b'b': 2}
print(Model(dict_str_float={'a': 1, b'b': 2}).dict_str_float)
#> {'a': 1.0, 'b': 2.0}
print(Model(simple_tuple=[1, 2, 3, 4]).simple_tuple)
#> (1, 2, 3, 4)
print(Model(tuple_of_different_types=[4, 3, 2, 1]).tuple_of_different_types)
#> (4, 3.0, '2', True)
print(Model(sequence_of_ints=[1, 2, 3, 4]).sequence_of_ints)
#> [1, 2, 3, 4]
print(Model(sequence_of_ints=(1, 2, 3, 4)).sequence_of_ints)
#> (1, 2, 3, 4)
print(Model(deque=[1, 2, 3]).deque)
#> deque([1, 2, 3])
from typing import (
Deque, Optional, Union
)
from collections.abc import Sequence
from pydantic import BaseModel
class Model(BaseModel):
simple_list: list = None
list_of_ints: list[int] = None
simple_tuple: tuple = None
tuple_of_different_types: tuple[int, float, str, bool] = None
simple_dict: dict = None
dict_str_float: dict[str, float] = None
simple_set: set = None
set_bytes: set[bytes] = None
frozen_set: frozenset[int] = None
str_or_bytes: Union[str, bytes] = None
none_or_str: Optional[str] = None
sequence_of_ints: Sequence[int] = None
compound: dict[Union[str, bytes], list[set[int]]] = None
deque: Deque[int] = None
print(Model(simple_list=['1', '2', '3']).simple_list)
#> ['1', '2', '3']
print(Model(list_of_ints=['1', '2', '3']).list_of_ints)
#> [1, 2, 3]
print(Model(simple_dict={'a': 1, b'b': 2}).simple_dict)
#> {'a': 1, b'b': 2}
print(Model(dict_str_float={'a': 1, b'b': 2}).dict_str_float)
#> {'a': 1.0, 'b': 2.0}
print(Model(simple_tuple=[1, 2, 3, 4]).simple_tuple)
#> (1, 2, 3, 4)
print(Model(tuple_of_different_types=[4, 3, 2, 1]).tuple_of_different_types)
#> (4, 3.0, '2', True)
print(Model(sequence_of_ints=[1, 2, 3, 4]).sequence_of_ints)
#> [1, 2, 3, 4]
print(Model(sequence_of_ints=(1, 2, 3, 4)).sequence_of_ints)
#> (1, 2, 3, 4)
print(Model(deque=[1, 2, 3]).deque)
#> deque([1, 2, 3])
from typing import (
Deque
)
from collections.abc import Sequence
from pydantic import BaseModel
class Model(BaseModel):
simple_list: list = None
list_of_ints: list[int] = None
simple_tuple: tuple = None
tuple_of_different_types: tuple[int, float, str, bool] = None
simple_dict: dict = None
dict_str_float: dict[str, float] = None
simple_set: set = None
set_bytes: set[bytes] = None
frozen_set: frozenset[int] = None
str_or_bytes: str | bytes = None
none_or_str: str | None = None
sequence_of_ints: Sequence[int] = None
compound: dict[str | bytes, list[set[int]]] = None
deque: Deque[int] = None
print(Model(simple_list=['1', '2', '3']).simple_list)
#> ['1', '2', '3']
print(Model(list_of_ints=['1', '2', '3']).list_of_ints)
#> [1, 2, 3]
print(Model(simple_dict={'a': 1, b'b': 2}).simple_dict)
#> {'a': 1, b'b': 2}
print(Model(dict_str_float={'a': 1, b'b': 2}).dict_str_float)
#> {'a': 1.0, 'b': 2.0}
print(Model(simple_tuple=[1, 2, 3, 4]).simple_tuple)
#> (1, 2, 3, 4)
print(Model(tuple_of_different_types=[4, 3, 2, 1]).tuple_of_different_types)
#> (4, 3.0, '2', True)
print(Model(sequence_of_ints=[1, 2, 3, 4]).sequence_of_ints)
#> [1, 2, 3, 4]
print(Model(sequence_of_ints=(1, 2, 3, 4)).sequence_of_ints)
#> (1, 2, 3, 4)
print(Model(deque=[1, 2, 3]).deque)
#> deque([1, 2, 3])
(This script is complete, it should run "as is")
Infinite Generators¶
If you have a generator you can use Sequence
as described above. In that case, the
generator will be consumed and stored on the model as a list and its values will be
validated with the sub-type of Sequence
(e.g. int
in Sequence[int]
).
But if you have a generator that you don't want to be consumed, e.g. an infinite
generator or a remote data loader, you can define its type with Iterable
:
from typing import Iterable
from pydantic import BaseModel
class Model(BaseModel):
infinite: Iterable[int]
def infinite_ints():
i = 0
while True:
yield i
i += 1
m = Model(infinite=infinite_ints())
print(m)
#> infinite=<generator object infinite_ints at 0x7f758f852c70>
for i in m.infinite:
print(i)
#> 0
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
if i == 10:
break
from collections.abc import Iterable
from pydantic import BaseModel
class Model(BaseModel):
infinite: Iterable[int]
def infinite_ints():
i = 0
while True:
yield i
i += 1
m = Model(infinite=infinite_ints())
print(m)
#> infinite=<generator object infinite_ints at 0x7f758f852e30>
for i in m.infinite:
print(i)
#> 0
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
if i == 10:
break
(This script is complete, it should run "as is")
Warning
Iterable
fields only perform a simple check that the argument is iterable and
won't be consumed.
No validation of their values is performed as it cannot be done without consuming the iterable.
Tip
If you want to validate the values of an infinite generator you can create a separate model and use it while consuming the generator, reporting the validation errors as appropriate.
pydantic can't validate the values automatically for you because it would require consuming the infinite generator.
Validating the first value¶
You can create a validator to validate the first value in an infinite generator and still not consume it entirely.
import itertools
from typing import Iterable
from pydantic import BaseModel, validator, ValidationError
from pydantic.fields import ModelField
class Model(BaseModel):
infinite: Iterable[int]
@validator('infinite')
# You don't need to add the "ModelField", but it will help your
# editor give you completion and catch errors
def infinite_first_int(cls, iterable, field: ModelField):
first_value = next(iterable)
if field.sub_fields:
# The Iterable had a parameter type, in this case it's int
# We use it to validate the first value
sub_field = field.sub_fields[0]
v, error = sub_field.validate(first_value, {}, loc='first_value')
if error:
raise ValidationError([error], cls)
# This creates a new generator that returns the first value and then
# the rest of the values from the (already started) iterable
return itertools.chain([first_value], iterable)
def infinite_ints():
i = 0
while True:
yield i
i += 1
m = Model(infinite=infinite_ints())
print(m)
#> infinite=<itertools.chain object at 0x7f758f520340>
def infinite_strs():
while True:
yield from 'allthesingleladies'
try:
Model(infinite=infinite_strs())
except ValidationError as e:
print(e)
"""
1 validation error for Model
infinite -> first_value
value is not a valid integer (type=type_error.integer)
"""
import itertools
from collections.abc import Iterable
from pydantic import BaseModel, validator, ValidationError
from pydantic.fields import ModelField
class Model(BaseModel):
infinite: Iterable[int]
@validator('infinite')
# You don't need to add the "ModelField", but it will help your
# editor give you completion and catch errors
def infinite_first_int(cls, iterable, field: ModelField):
first_value = next(iterable)
if field.sub_fields:
# The Iterable had a parameter type, in this case it's int
# We use it to validate the first value
sub_field = field.sub_fields[0]
v, error = sub_field.validate(first_value, {}, loc='first_value')
if error:
raise ValidationError([error], cls)
# This creates a new generator that returns the first value and then
# the rest of the values from the (already started) iterable
return itertools.chain([first_value], iterable)
def infinite_ints():
i = 0
while True:
yield i
i += 1
m = Model(infinite=infinite_ints())
print(m)
#> infinite=<itertools.chain object at 0x7f758f5032e0>
def infinite_strs():
while True:
yield from 'allthesingleladies'
try:
Model(infinite=infinite_strs())
except ValidationError as e:
print(e)
"""
1 validation error for Model
infinite -> first_value
value is not a valid integer (type=type_error.integer)
"""
(This script is complete, it should run "as is")
Unions¶
The Union
type allows a model attribute to accept different types, e.g.:
Info
You may get unexpected coercion with Union
; see below.
Know that you can also make the check slower but stricter by using Smart Union
from uuid import UUID
from typing import Union
from pydantic import BaseModel
class User(BaseModel):
id: Union[int, str, UUID]
name: str
user_01 = User(id=123, name='John Doe')
print(user_01)
#> id=123 name='John Doe'
print(user_01.id)
#> 123
user_02 = User(id='1234', name='John Doe')
print(user_02)
#> id=1234 name='John Doe'
print(user_02.id)
#> 1234
user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868')
user_03 = User(id=user_03_uuid, name='John Doe')
print(user_03)
#> id=275603287559914445491632874575877060712 name='John Doe'
print(user_03.id)
#> 275603287559914445491632874575877060712
print(user_03_uuid.int)
#> 275603287559914445491632874575877060712
from uuid import UUID
from pydantic import BaseModel
class User(BaseModel):
id: int | str | UUID
name: str
user_01 = User(id=123, name='John Doe')
print(user_01)
#> id=123 name='John Doe'
print(user_01.id)
#> 123
user_02 = User(id='1234', name='John Doe')
print(user_02)
#> id=1234 name='John Doe'
print(user_02.id)
#> 1234
user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868')
user_03 = User(id=user_03_uuid, name='John Doe')
print(user_03)
#> id=275603287559914445491632874575877060712 name='John Doe'
print(user_03.id)
#> 275603287559914445491632874575877060712
print(user_03_uuid.int)
#> 275603287559914445491632874575877060712
(This script is complete, it should run "as is")
However, as can be seen above, pydantic will attempt to 'match' any of the types defined under Union
and will use
the first one that matches. In the above example the id
of user_03
was defined as a uuid.UUID
class (which
is defined under the attribute's Union
annotation) but as the uuid.UUID
can be marshalled into an int
it
chose to match against the int
type and disregarded the other types.
Warning
typing.Union
also ignores order when defined,
so Union[int, float] == Union[float, int]
which can lead to unexpected behaviour
when combined with matching based on the Union
type order inside other type definitions, such as List
and Dict
types (because Python treats these definitions as singletons).
For example, Dict[str, Union[int, float]] == Dict[str, Union[float, int]]
with the order based on the first time it was defined.
Please note that this can also be affected by third party libraries
and their internal type definitions and the import orders.
As such, it is recommended that, when defining Union
annotations, the most specific type is included first and
followed by less specific types.
In the above example, the UUID
class should precede the int
and str
classes to preclude the unexpected representation as such:
from uuid import UUID
from typing import Union
from pydantic import BaseModel
class User(BaseModel):
id: Union[UUID, int, str]
name: str
user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868')
user_03 = User(id=user_03_uuid, name='John Doe')
print(user_03)
#> id=UUID('cf57432e-809e-4353-adbd-9d5c0d733868') name='John Doe'
print(user_03.id)
#> cf57432e-809e-4353-adbd-9d5c0d733868
print(user_03_uuid.int)
#> 275603287559914445491632874575877060712
from uuid import UUID
from pydantic import BaseModel
class User(BaseModel):
id: UUID | int | str
name: str
user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868')
user_03 = User(id=user_03_uuid, name='John Doe')
print(user_03)
#> id=UUID('cf57432e-809e-4353-adbd-9d5c0d733868') name='John Doe'
print(user_03.id)
#> cf57432e-809e-4353-adbd-9d5c0d733868
print(user_03_uuid.int)
#> 275603287559914445491632874575877060712
(This script is complete, it should run "as is")
Tip
The type Optional[x]
is a shorthand for Union[x, None]
.
Optional[x]
can also be used to specify a required field that can take None
as a value.
See more details in Required Fields.
Discriminated Unions (a.k.a. Tagged Unions)¶
When Union
is used with multiple submodels, you sometimes know exactly which submodel needs to
be checked and validated and want to enforce this.
To do that you can set the same field - let's call it my_discriminator
- in each of the submodels
with a discriminated value, which is one (or many) Literal
value(s).
For your Union
, you can set the discriminator in its value: Field(discriminator='my_discriminator')
.
Setting a discriminated union has many benefits:
- validation is faster since it is only attempted against one model
- only one explicit error is raised in case of failure
- the generated JSON schema implements the associated OpenAPI specification
from typing import Literal, Union
from pydantic import BaseModel, Field, ValidationError
class Cat(BaseModel):
pet_type: Literal['cat']
meows: int
class Dog(BaseModel):
pet_type: Literal['dog']
barks: float
class Lizard(BaseModel):
pet_type: Literal['reptile', 'lizard']
scales: bool
class Model(BaseModel):
pet: Union[Cat, Dog, Lizard] = Field(..., discriminator='pet_type')
n: int
print(Model(pet={'pet_type': 'dog', 'barks': 3.14}, n=1))
#> pet=Dog(pet_type='dog', barks=3.14) n=1
try:
Model(pet={'pet_type': 'dog'}, n=1)
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Dog -> barks
field required (type=value_error.missing)
"""
from typing import Literal
from pydantic import BaseModel, Field, ValidationError
class Cat(BaseModel):
pet_type: Literal['cat']
meows: int
class Dog(BaseModel):
pet_type: Literal['dog']
barks: float
class Lizard(BaseModel):
pet_type: Literal['reptile', 'lizard']
scales: bool
class Model(BaseModel):
pet: Cat | Dog | Lizard = Field(..., discriminator='pet_type')
n: int
print(Model(pet={'pet_type': 'dog', 'barks': 3.14}, n=1))
#> pet=Dog(pet_type='dog', barks=3.14) n=1
try:
Model(pet={'pet_type': 'dog'}, n=1)
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Dog -> barks
field required (type=value_error.missing)
"""
(This script is complete, it should run "as is")
Note
Using the Annotated Fields syntax can be handy to regroup
the Union
and discriminator
information. See below for an example!
Warning
Discriminated unions cannot be used with only a single variant, such as Union[Cat]
.
Python changes Union[T]
into T
at interpretation time, so it is not possible for pydantic
to
distinguish fields of Union[T]
from T
.
Nested Discriminated Unions¶
Only one discriminator can be set for a field but sometimes you want to combine multiple discriminators.
In this case you can always create "intermediate" models with __root__
and add your discriminator.
from typing import Literal, Union
from typing_extensions import Annotated
from pydantic import BaseModel, Field, ValidationError
class BlackCat(BaseModel):
pet_type: Literal['cat']
color: Literal['black']
black_name: str
class WhiteCat(BaseModel):
pet_type: Literal['cat']
color: Literal['white']
white_name: str
# Can also be written with a custom root type
#
# class Cat(BaseModel):
# __root__: Annotated[Union[BlackCat, WhiteCat], Field(discriminator='color')]
Cat = Annotated[Union[BlackCat, WhiteCat], Field(discriminator='color')]
class Dog(BaseModel):
pet_type: Literal['dog']
name: str
Pet = Annotated[Union[Cat, Dog], Field(discriminator='pet_type')]
class Model(BaseModel):
pet: Pet
n: int
m = Model(pet={'pet_type': 'cat', 'color': 'black', 'black_name': 'felix'}, n=1)
print(m)
#> pet=BlackCat(pet_type='cat', color='black', black_name='felix') n=1
try:
Model(pet={'pet_type': 'cat', 'color': 'red'}, n='1')
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Union[BlackCat, WhiteCat]
No match for discriminator 'color' and value 'red' (allowed values:
'black', 'white')
(type=value_error.discriminated_union.invalid_discriminator;
discriminator_key=color; discriminator_value=red; allowed_values='black',
'white')
"""
try:
Model(pet={'pet_type': 'cat', 'color': 'black'}, n='1')
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Union[BlackCat, WhiteCat] -> BlackCat -> black_name
field required (type=value_error.missing)
"""
from typing import Literal, Union
from typing import Annotated
from pydantic import BaseModel, Field, ValidationError
class BlackCat(BaseModel):
pet_type: Literal['cat']
color: Literal['black']
black_name: str
class WhiteCat(BaseModel):
pet_type: Literal['cat']
color: Literal['white']
white_name: str
# Can also be written with a custom root type
#
# class Cat(BaseModel):
# __root__: Annotated[Union[BlackCat, WhiteCat], Field(discriminator='color')]
Cat = Annotated[Union[BlackCat, WhiteCat], Field(discriminator='color')]
class Dog(BaseModel):
pet_type: Literal['dog']
name: str
Pet = Annotated[Union[Cat, Dog], Field(discriminator='pet_type')]
class Model(BaseModel):
pet: Pet
n: int
m = Model(pet={'pet_type': 'cat', 'color': 'black', 'black_name': 'felix'}, n=1)
print(m)
#> pet=BlackCat(pet_type='cat', color='black', black_name='felix') n=1
try:
Model(pet={'pet_type': 'cat', 'color': 'red'}, n='1')
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Union[BlackCat, WhiteCat]
No match for discriminator 'color' and value 'red' (allowed values:
'black', 'white')
(type=value_error.discriminated_union.invalid_discriminator;
discriminator_key=color; discriminator_value=red; allowed_values='black',
'white')
"""
try:
Model(pet={'pet_type': 'cat', 'color': 'black'}, n='1')
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet -> Union[BlackCat, WhiteCat] -> BlackCat -> black_name
field required (type=value_error.missing)
"""
(This script is complete, it should run "as is")
Enums and Choices¶
pydantic uses Python's standard enum
classes to define choices.
from enum import Enum, IntEnum
from pydantic import BaseModel, ValidationError
class FruitEnum(str, Enum):
pear = 'pear'
banana = 'banana'
class ToolEnum(IntEnum):
spanner = 1
wrench = 2
class CookingModel(BaseModel):
fruit: FruitEnum = FruitEnum.pear
tool: ToolEnum = ToolEnum.spanner
print(CookingModel())
#> fruit=<FruitEnum.pear: 'pear'> tool=<ToolEnum.spanner: 1>
print(CookingModel(tool=2, fruit='banana'))
#> fruit=<FruitEnum.banana: 'banana'> tool=<ToolEnum.wrench: 2>
try:
CookingModel(fruit='other')
except ValidationError as e:
print(e)
"""
1 validation error for CookingModel
fruit
value is not a valid enumeration member; permitted: 'pear', 'banana'
(type=type_error.enum; enum_values=[<FruitEnum.pear: 'pear'>,
<FruitEnum.banana: 'banana'>])
"""
(This script is complete, it should run "as is")
Datetime Types¶
Pydantic supports the following datetime types:
-
datetime
fields can be:datetime
, existingdatetime
objectint
orfloat
, assumed as Unix time, i.e. seconds (if >=-2e10
or <=2e10
) or milliseconds (if <-2e10
or >2e10
) since 1 January 1970-
str
, following formats work:YYYY-MM-DD[T]HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]
int
orfloat
as a string (assumed as Unix time)
-
date
fields can be:date
, existingdate
objectint
orfloat
, seedatetime
-
str
, following formats work:YYYY-MM-DD
int
orfloat
, seedatetime
-
time
fields can be:time
, existingtime
object-
str
, following formats work:HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]
-
timedelta
fields can be:timedelta
, existingtimedelta
objectint
orfloat
, assumed as seconds-
str
, following formats work:[-][DD ][HH:MM]SS[.ffffff]
[±]P[DD]DT[HH]H[MM]M[SS]S
(ISO 8601 format for timedelta)
from datetime import date, datetime, time, timedelta
from pydantic import BaseModel
class Model(BaseModel):
d: date = None
dt: datetime = None
t: time = None
td: timedelta = None
m = Model(
d=1966280412345.6789,
dt='2032-04-23T10:20:30.400+02:30',
t=time(4, 8, 16),
td='P3DT12H30M5S',
)
print(m.dict())
"""
{
'd': datetime.date(2032, 4, 22),
'dt': datetime.datetime(2032, 4, 23, 10, 20, 30, 400000,
tzinfo=datetime.timezone(datetime.timedelta(seconds=9000))),
't': datetime.time(4, 8, 16),
'td': datetime.timedelta(days=3, seconds=45005),
}
"""
(This script is complete, it should run "as is")
Booleans¶
Warning
The logic for parsing bool
fields has changed as of version v1.0.
Prior to v1.0, bool
parsing never failed, leading to some unexpected results.
The new logic is described below.
A standard bool
field will raise a ValidationError
if the value is not one of the following:
- A valid boolean (i.e.
True
orFalse
), - The integers
0
or1
, - a
str
which when converted to lower case is one of'0', 'off', 'f', 'false', 'n', 'no', '1', 'on', 't', 'true', 'y', 'yes'
- a
bytes
which is valid (per the previous rule) when decoded tostr
Note
If you want stricter boolean logic (e.g. a field which only permits True
and False
) you can
use StrictBool
.
Here is a script demonstrating some of these behaviors:
from pydantic import BaseModel, ValidationError
class BooleanModel(BaseModel):
bool_value: bool
print(BooleanModel(bool_value=False))
#> bool_value=False
print(BooleanModel(bool_value='False'))
#> bool_value=False
try:
BooleanModel(bool_value=[])
except ValidationError as e:
print(str(e))
"""
1 validation error for BooleanModel
bool_value
value could not be parsed to a boolean (type=type_error.bool)
"""
(This script is complete, it should run "as is")
Callable¶
Fields can also be of type Callable
:
from typing import Callable
from pydantic import BaseModel
class Foo(BaseModel):
callback: Callable[[int], int]
m = Foo(callback=lambda x: x)
print(m)
#> callback=<function <lambda> at 0x7f758f5eec20>
from collections.abc import Callable
from pydantic import BaseModel
class Foo(BaseModel):
callback: Callable[[int], int]
m = Foo(callback=lambda x: x)
print(m)
#> callback=<function <lambda> at 0x7f758f5eedd0>
(This script is complete, it should run "as is")
Warning
Callable fields only perform a simple check that the argument is callable; no validation of arguments, their types, or the return type is performed.
Type¶
pydantic supports the use of Type[T]
to specify that a field may only accept classes (not instances)
that are subclasses of T
.
from typing import Type
from pydantic import BaseModel
from pydantic import ValidationError
class Foo:
pass
class Bar(Foo):
pass
class Other:
pass
class SimpleModel(BaseModel):
just_subclasses: Type[Foo]
SimpleModel(just_subclasses=Foo)
SimpleModel(just_subclasses=Bar)
try:
SimpleModel(just_subclasses=Other)
except ValidationError as e:
print(e)
"""
1 validation error for SimpleModel
just_subclasses
subclass of Foo expected (type=type_error.subclass; expected_class=Foo)
"""
from pydantic import BaseModel
from pydantic import ValidationError
class Foo:
pass
class Bar(Foo):
pass
class Other:
pass
class SimpleModel(BaseModel):
just_subclasses: type[Foo]
SimpleModel(just_subclasses=Foo)
SimpleModel(just_subclasses=Bar)
try:
SimpleModel(just_subclasses=Other)
except ValidationError as e:
print(e)
"""
1 validation error for SimpleModel
just_subclasses
subclass of Foo expected (type=type_error.subclass; expected_class=Foo)
"""
(This script is complete, it should run "as is")
You may also use Type
to specify that any class is allowed.
from typing import Type
from pydantic import BaseModel, ValidationError
class Foo:
pass
class LenientSimpleModel(BaseModel):
any_class_goes: Type
LenientSimpleModel(any_class_goes=int)
LenientSimpleModel(any_class_goes=Foo)
try:
LenientSimpleModel(any_class_goes=Foo())
except ValidationError as e:
print(e)
"""
1 validation error for LenientSimpleModel
any_class_goes
a class is expected (type=type_error.class)
"""
(This script is complete, it should run "as is")
TypeVar¶
TypeVar
is supported either unconstrained, constrained or with a bound.
from typing import TypeVar
from pydantic import BaseModel
Foobar = TypeVar('Foobar')
BoundFloat = TypeVar('BoundFloat', bound=float)
IntStr = TypeVar('IntStr', int, str)
class Model(BaseModel):
a: Foobar # equivalent of ": Any"
b: BoundFloat # equivalent of ": float"
c: IntStr # equivalent of ": Union[int, str]"
print(Model(a=[1], b=4.2, c='x'))
#> a=[1] b=4.2 c='x'
# a may be None and is therefore optional
print(Model(b=1, c=1))
#> a=None b=1.0 c=1
(This script is complete, it should run "as is")
Literal Type¶
Note
This is a new feature of the Python standard library as of Python 3.8; prior to Python 3.8, it requires the typing-extensions package.
pydantic supports the use of typing.Literal
(or typing_extensions.Literal
prior to Python 3.8)
as a lightweight way to specify that a field may accept only specific literal values:
from typing import Literal
from pydantic import BaseModel, ValidationError
class Pie(BaseModel):
flavor: Literal['apple', 'pumpkin']
Pie(flavor='apple')
Pie(flavor='pumpkin')
try:
Pie(flavor='cherry')
except ValidationError as e:
print(str(e))
"""
1 validation error for Pie
flavor
unexpected value; permitted: 'apple', 'pumpkin'
(type=value_error.const; given=cherry; permitted=('apple', 'pumpkin'))
"""
(This script is complete, it should run "as is")
One benefit of this field type is that it can be used to check for equality with one or more specific values without needing to declare custom validators:
from typing import ClassVar, List, Union
from typing import Literal
from pydantic import BaseModel, ValidationError
class Cake(BaseModel):
kind: Literal['cake']
required_utensils: ClassVar[List[str]] = ['fork', 'knife']
class IceCream(BaseModel):
kind: Literal['icecream']
required_utensils: ClassVar[List[str]] = ['spoon']
class Meal(BaseModel):
dessert: Union[Cake, IceCream]
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Cake
print(type(Meal(dessert={'kind': 'icecream'}).dessert).__name__)
#> IceCream
try:
Meal(dessert={'kind': 'pie'})
except ValidationError as e:
print(str(e))
"""
2 validation errors for Meal
dessert -> kind
unexpected value; permitted: 'cake' (type=value_error.const; given=pie;
permitted=('cake',))
dessert -> kind
unexpected value; permitted: 'icecream' (type=value_error.const;
given=pie; permitted=('icecream',))
"""
from typing import ClassVar, Union
from typing import Literal
from pydantic import BaseModel, ValidationError
class Cake(BaseModel):
kind: Literal['cake']
required_utensils: ClassVar[list[str]] = ['fork', 'knife']
class IceCream(BaseModel):
kind: Literal['icecream']
required_utensils: ClassVar[list[str]] = ['spoon']
class Meal(BaseModel):
dessert: Union[Cake, IceCream]
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Cake
print(type(Meal(dessert={'kind': 'icecream'}).dessert).__name__)
#> IceCream
try:
Meal(dessert={'kind': 'pie'})
except ValidationError as e:
print(str(e))
"""
2 validation errors for Meal
dessert -> kind
unexpected value; permitted: 'cake' (type=value_error.const; given=pie;
permitted=('cake',))
dessert -> kind
unexpected value; permitted: 'icecream' (type=value_error.const;
given=pie; permitted=('icecream',))
"""
from typing import ClassVar
from typing import Literal
from pydantic import BaseModel, ValidationError
class Cake(BaseModel):
kind: Literal['cake']
required_utensils: ClassVar[list[str]] = ['fork', 'knife']
class IceCream(BaseModel):
kind: Literal['icecream']
required_utensils: ClassVar[list[str]] = ['spoon']
class Meal(BaseModel):
dessert: Cake | IceCream
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Cake
print(type(Meal(dessert={'kind': 'icecream'}).dessert).__name__)
#> IceCream
try:
Meal(dessert={'kind': 'pie'})
except ValidationError as e:
print(str(e))
"""
2 validation errors for Meal
dessert -> kind
unexpected value; permitted: 'cake' (type=value_error.const; given=pie;
permitted=('cake',))
dessert -> kind
unexpected value; permitted: 'icecream' (type=value_error.const;
given=pie; permitted=('icecream',))
"""
(This script is complete, it should run "as is")
With proper ordering in an annotated Union
, you can use this to parse types of decreasing specificity:
from typing import Optional, Union
from typing import Literal
from pydantic import BaseModel
class Dessert(BaseModel):
kind: str
class Pie(Dessert):
kind: Literal['pie']
flavor: Optional[str]
class ApplePie(Pie):
flavor: Literal['apple']
class PumpkinPie(Pie):
flavor: Literal['pumpkin']
class Meal(BaseModel):
dessert: Union[ApplePie, PumpkinPie, Pie, Dessert]
print(type(Meal(dessert={'kind': 'pie', 'flavor': 'apple'}).dessert).__name__)
#> ApplePie
print(type(Meal(dessert={'kind': 'pie', 'flavor': 'pumpkin'}).dessert).__name__)
#> PumpkinPie
print(type(Meal(dessert={'kind': 'pie'}).dessert).__name__)
#> Pie
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Dessert
from typing import Literal
from pydantic import BaseModel
class Dessert(BaseModel):
kind: str
class Pie(Dessert):
kind: Literal['pie']
flavor: str | None
class ApplePie(Pie):
flavor: Literal['apple']
class PumpkinPie(Pie):
flavor: Literal['pumpkin']
class Meal(BaseModel):
dessert: ApplePie | PumpkinPie | Pie | Dessert
print(type(Meal(dessert={'kind': 'pie', 'flavor': 'apple'}).dessert).__name__)
#> ApplePie
print(type(Meal(dessert={'kind': 'pie', 'flavor': 'pumpkin'}).dessert).__name__)
#> PumpkinPie
print(type(Meal(dessert={'kind': 'pie'}).dessert).__name__)
#> Pie
print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__)
#> Dessert
(This script is complete, it should run "as is")
Annotated Types¶
NamedTuple¶
from typing import NamedTuple
from pydantic import BaseModel, ValidationError
class Point(NamedTuple):
x: int
y: int
class Model(BaseModel):
p: Point
print(Model(p=('1', '2')))
#> p=Point(x=1, y=2)
try:
Model(p=('1.3', '2'))
except ValidationError as e:
print(e)
"""
1 validation error for Model
p -> x
value is not a valid integer (type=type_error.integer)
"""
(This script is complete, it should run "as is")
TypedDict¶
Note
This is a new feature of the Python standard library as of Python 3.8. Prior to Python 3.8, it requires the typing-extensions package. But required and optional fields are properly differentiated only since Python 3.9. We therefore recommend using typing-extensions with Python 3.8 as well.
from typing_extensions import TypedDict
from pydantic import BaseModel, Extra, ValidationError
# `total=False` means keys are non-required
class UserIdentity(TypedDict, total=False):
name: str
surname: str
class User(TypedDict):
identity: UserIdentity
age: int
class Model(BaseModel):
u: User
class Config:
extra = Extra.forbid
print(Model(u={'identity': {'name': 'Smith', 'surname': 'John'}, 'age': '37'}))
#> u={'identity': {'name': 'Smith', 'surname': 'John'}, 'age': 37}
print(Model(u={'identity': {'name': None, 'surname': 'John'}, 'age': '37'}))
#> u={'identity': {'name': None, 'surname': 'John'}, 'age': 37}
print(Model(u={'identity': {}, 'age': '37'}))
#> u={'identity': {}, 'age': 37}
try:
Model(u={'identity': {'name': ['Smith'], 'surname': 'John'}, 'age': '24'})
except ValidationError as e:
print(e)
"""
1 validation error for Model
u -> identity -> name
str type expected (type=type_error.str)
"""
try:
Model(
u={
'identity': {'name': 'Smith', 'surname': 'John'},
'age': '37',
'email': '[email protected]',
}
)
except ValidationError as e:
print(e)
"""
1 validation error for Model
u -> email
extra fields not permitted (type=value_error.extra)
"""
(This script is complete, it should run "as is")
Pydantic Types¶
pydantic also provides a variety of other useful types:
FilePath
- like
Path
, but the path must exist and be a file DirectoryPath
- like
Path
, but the path must exist and be a directory PastDate
- like
date
, but the date should be in the past FutureDate
- like
date
, but the date should be in the future EmailStr
- requires email-validator to be installed; the input string must be a valid email address, and the output is a simple string
NameEmail
- requires email-validator to be installed;
the input string must be either a valid email address or in the format
Fred Bloggs <[email protected]>
, and the output is aNameEmail
object which has two properties:name
andemail
. ForFred Bloggs <[email protected]>
the name would be"Fred Bloggs"
; for[email protected]
it would be"fred.bloggs"
. PyObject
- expects a string and loads the Python object importable at that dotted path;
e.g. if
'math.cos'
was provided, the resulting field value would be the functioncos
Color
- for parsing HTML and CSS colors; see Color Type
Json
- a special type wrapper which loads JSON before parsing; see JSON Type
PaymentCardNumber
- for parsing and validating payment cards; see payment cards
AnyUrl
- any URL; see URLs
AnyHttpUrl
- an HTTP URL; see URLs
HttpUrl
- a stricter HTTP URL; see URLs
FileUrl
- a file path URL; see URLs
PostgresDsn
- a postgres DSN style URL; see URLs
CockroachDsn
- a cockroachdb DSN style URL; see URLs
AmqpDsn
- an
AMQP
DSN style URL as used by RabbitMQ, StormMQ, ActiveMQ etc.; see URLs RedisDsn
- a redis DSN style URL; see URLs
MongoDsn
- a MongoDB DSN style URL; see URLs
KafkaDsn
- a kafka DSN style URL; see URLs
stricturl
- a type method for arbitrary URL constraints; see URLs
UUID1
- requires a valid UUID of type 1; see
UUID
above UUID3
- requires a valid UUID of type 3; see
UUID
above UUID4
- requires a valid UUID of type 4; see
UUID
above UUID5
- requires a valid UUID of type 5; see
UUID
above SecretBytes
- bytes where the value is kept partially secret; see Secrets
SecretStr
- string where the value is kept partially secret; see Secrets
IPvAnyAddress
- allows either an
IPv4Address
or anIPv6Address
IPvAnyInterface
- allows either an
IPv4Interface
or anIPv6Interface
IPvAnyNetwork
- allows either an
IPv4Network
or anIPv6Network
NegativeFloat
- allows a float which is negative; uses standard
float
parsing then checks the value is less than 0; see Constrained Types NegativeInt
- allows an int which is negative; uses standard
int
parsing then checks the value is less than 0; see Constrained Types PositiveFloat
- allows a float which is positive; uses standard
float
parsing then checks the value is greater than 0; see Constrained Types PositiveInt
- allows an int which is positive; uses standard
int
parsing then checks the value is greater than 0; see Constrained Types conbytes
- type method for constraining bytes; see Constrained Types
condecimal
- type method for constraining Decimals; see Constrained Types
confloat
- type method for constraining floats; see Constrained Types
conint
- type method for constraining ints; see Constrained Types
condate
- type method for constraining dates; see Constrained Types
conlist
- type method for constraining lists; see Constrained Types
conset
- type method for constraining sets; see Constrained Types
confrozenset
- type method for constraining frozen sets; see Constrained Types
constr
- type method for constraining strs; see Constrained Types
URLs¶
For URI/URL validation the following types are available:
AnyUrl
: any scheme allowed, TLD not required, host requiredAnyHttpUrl
: schemehttp
orhttps
, TLD not required, host requiredHttpUrl
: schemehttp
orhttps
, TLD required, host required, max length 2083FileUrl
: schemefile
, host not requiredPostgresDsn
: user info required, TLD not required, host required, as of V.10PostgresDsn
supports multiple hosts. The following schemes are supported:postgres
postgresql
postgresql+asyncpg
postgresql+pg8000
postgresql+psycopg
postgresql+psycopg2
postgresql+psycopg2cffi
postgresql+py-postgresql
postgresql+pygresql
CockroachDsn
: schemecockroachdb
, user info required, TLD not required, host required. Also, its supported DBAPI dialects:cockroachdb+asyncpg
cockroachdb+psycopg2
AmqpDsn
: schemaamqp
oramqps
, user info not required, TLD not required, host not requiredRedisDsn
: schemeredis
orrediss
, user info not required, tld not required, host not required (CHANGED: user info) (e.g.,rediss://:pass@localhost
)MongoDsn
: schememongodb
, user info not required, database name not required, port not required from v1.6 onwards), user info may be passed without user part (e.g.,mongodb://mongodb0.example.com:27017
)stricturl
: method with the following keyword arguments: -strip_whitespace: bool = True
-min_length: int = 1
-max_length: int = 2 ** 16
-tld_required: bool = True
-host_required: bool = True
-allowed_schemes: Optional[Set[str]] = None
Warning
In V1.10.0 and v1.10.1 stricturl
also took an optional quote_plus
argument and URL components were percent
encoded in some cases. This feature was removed in v1.10.2, see
#4470 for explanation and more details.
The above types (which all inherit from AnyUrl
) will attempt to give descriptive errors when invalid URLs are
provided:
from pydantic import BaseModel, HttpUrl, ValidationError
class MyModel(BaseModel):
url: HttpUrl
m = MyModel(url='http://www.example.com')
print(m.url)
#> http://www.example.com
try:
MyModel(url='ftp://invalid.url')
except ValidationError as e:
print(e)
"""
1 validation error for MyModel
url
URL scheme not permitted (type=value_error.url.scheme;
allowed_schemes={'https', 'http'})
"""
try:
MyModel(url='not a url')
except ValidationError as e:
print(e)
"""
1 validation error for MyModel
url
invalid or missing URL scheme (type=value_error.url.scheme)
"""
(This script is complete, it should run "as is")
If you require a custom URI/URL type, it can be created in a similar way to the types defined above.
URL Properties¶
Assuming an input URL of http://samuel:[email protected]:8000/the/path/?query=here#fragment=is;this=bit
,
the above types export the following properties:
scheme
: always set - the url scheme (http
above)host
: always set - the url host (example.com
above)-
host_type
: always set - describes the type of host, either:domain
: e.g.example.com
,int_domain
: international domain, see below, e.g.exampl£e.org
,ipv4
: an IP V4 address, e.g.127.0.0.1
, oripv6
: an IP V6 address, e.g.2001:db8:ff00:42
user
: optional - the username if included (samuel
above)password
: optional - the password if included (pass
above)tld
: optional - the top level domain (com
above), Note: this will be wrong for any two-level domain, e.g. "co.uk". You'll need to implement your own list of TLDs if you require full TLD validationport
: optional - the port (8000
above)path
: optional - the path (/the/path/
above)query
: optional - the URL query (aka GET arguments or "search string") (query=here
above)fragment
: optional - the fragment (fragment=is;this=bit
above)
If further validation is required, these properties can be used by validators to enforce specific behaviour:
from pydantic import BaseModel, HttpUrl, PostgresDsn, ValidationError, validator
class MyModel(BaseModel):
url: HttpUrl
m = MyModel(url='http://www.example.com')
# the repr() method for a url will display all properties of the url
print(repr(m.url))
#> HttpUrl('http://www.example.com', )
print(m.url.scheme)
#> http
print(m.url.host)
#> www.example.com
print(m.url.host_type)
#> domain
print(m.url.port)
#> 80
class MyDatabaseModel(BaseModel):
db: PostgresDsn
@validator('db')
def check_db_name(cls, v):
assert v.path and len(v.path) > 1, 'database must be provided'
return v
m = MyDatabaseModel(db='postgres://user:pass@localhost:5432/foobar')
print(m.db)
#> postgres://user:pass@localhost:5432/foobar
try:
MyDatabaseModel(db='postgres://user:pass@localhost:5432')
except ValidationError as e:
print(e)
"""
1 validation error for MyDatabaseModel
db
database must be provided (type=assertion_error)
"""
(This script is complete, it should run "as is")
International Domains¶
"International domains" (e.g. a URL where the host or TLD includes non-ascii characters) will be encoded via punycode (see this article for a good description of why this is important):
from pydantic import BaseModel, HttpUrl
class MyModel(BaseModel):
url: HttpUrl
m1 = MyModel(url='http://puny£code.com')
print(m1.url)
#> http://xn--punycode-eja.com
print(m1.url.host_type)
#> int_domain
m2 = MyModel(url='https://www.аррӏе.com/')
print(m2.url)
#> https://www.xn--80ak6aa92e.com/
print(m2.url.host_type)
#> int_domain
m3 = MyModel(url='https://www.example.珠宝/')
print(m3.url)
#> https://www.example.xn--pbt977c/
print(m3.url.host_type)
#> int_domain
(This script is complete, it should run "as is")
Warning
Underscores in Hostnames¶
In pydantic underscores are allowed in all parts of a domain except the tld. Technically this might be wrong - in theory the hostname cannot have underscores, but subdomains can.
To explain this; consider the following two cases:
exam_ple.co.uk
: the hostname isexam_ple
, which should not be allowed since it contains an underscorefoo_bar.example.com
the hostname isexample
, which should be allowed since the underscore is in the subdomain
Without having an exhaustive list of TLDs, it would be impossible to differentiate between these two. Therefore underscores are allowed, but you can always do further validation in a validator if desired.
Also, Chrome, Firefox, and Safari all currently accept http://exam_ple.com
as a URL, so we're in good
(or at least big) company.
Color Type¶
You can use the Color
data type for storing colors as per
CSS3 specification. Colors can be defined via:
- name (e.g.
"Black"
,"azure"
) - hexadecimal value
(e.g.
"0x000"
,"#FFFFFF"
,"7fffd4"
) - RGB/RGBA tuples (e.g.
(255, 255, 255)
,(255, 255, 255, 0.5)
) - RGB/RGBA strings
(e.g.
"rgb(255, 255, 255)"
,"rgba(255, 255, 255, 0.5)"
) - HSL strings
(e.g.
"hsl(270, 60%, 70%)"
,"hsl(270, 60%, 70%, .5)"
)
from pydantic import BaseModel, ValidationError
from pydantic.color import Color
c = Color('ff00ff')
print(c.as_named())
#> magenta
print(c.as_hex())
#> #f0f
c2 = Color('green')
print(c2.as_rgb_tuple())
#> (0, 128, 0)
print(c2.original())
#> green
print(repr(Color('hsl(180, 100%, 50%)')))
#> Color('cyan', rgb=(0, 255, 255))
class Model(BaseModel):
color: Color
print(Model(color='purple'))
#> color=Color('purple', rgb=(128, 0, 128))
try:
Model(color='hello')
except ValidationError as e:
print(e)
"""
1 validation error for Model
color
value is not a valid color: string not recognised as a valid color
(type=value_error.color; reason=string not recognised as a valid color)
"""
(This script is complete, it should run "as is")
Color
has the following methods:
original
- the original string or tuple passed to
Color
as_named
- returns a named CSS3 color; fails if the alpha channel is set or no such color exists unless
fallback=True
is supplied, in which case it falls back toas_hex
as_hex
- returns a string in the format
#fff
or#ffffff
; will contain 4 (or 8) hex values if the alpha channel is set, e.g.#7f33cc26
as_rgb
- returns a string in the format
rgb(<red>, <green>, <blue>)
, orrgba(<red>, <green>, <blue>, <alpha>)
if the alpha channel is set as_rgb_tuple
- returns a 3- or 4-tuple in RGB(a) format. The
alpha
keyword argument can be used to define whether the alpha channel should be included; options:True
- always include,False
- never include,None
(default) - include if set as_hsl
- string in the format
hsl(<hue deg>, <saturation %>, <lightness %>)
orhsl(<hue deg>, <saturation %>, <lightness %>, <alpha>)
if the alpha channel is set as_hsl_tuple
- returns a 3- or 4-tuple in HSL(a) format. The
alpha
keyword argument can be used to define whether the alpha channel should be included; options:True
- always include,False
- never include,None
(the default) - include if set
The __str__
method for Color
returns self.as_named(fallback=True)
.
Note
the as_hsl*
refer to hue, saturation, lightness "HSL" as used in html and most of the world, not
"HLS" as used in Python's colorsys
.
Secret Types¶
You can use the SecretStr
and the SecretBytes
data types for storing sensitive information
that you do not want to be visible in logging or tracebacks.
SecretStr
and SecretBytes
can be initialized idempotently or by using str
or bytes
literals respectively.
The SecretStr
and SecretBytes
will be formatted as either '**********'
or ''
on conversion to json.
from pydantic import BaseModel, SecretStr, SecretBytes, ValidationError
class SimpleModel(BaseModel):
password: SecretStr
password_bytes: SecretBytes
sm = SimpleModel(password='IAmSensitive', password_bytes=b'IAmSensitiveBytes')
# Standard access methods will not display the secret
print(sm)
#> password=SecretStr('**********') password_bytes=SecretBytes(b'**********')
print(sm.password)
#> **********
print(sm.dict())
"""
{
'password': SecretStr('**********'),
'password_bytes': SecretBytes(b'**********'),
}
"""
print(sm.json())
#> {"password": "**********", "password_bytes": "**********"}
# Use get_secret_value method to see the secret's content.
print(sm.password.get_secret_value())
#> IAmSensitive
print(sm.password_bytes.get_secret_value())
#> b'IAmSensitiveBytes'
try:
SimpleModel(password=[1, 2, 3], password_bytes=[1, 2, 3])
except ValidationError as e:
print(e)
"""
2 validation errors for SimpleModel
password
str type expected (type=type_error.str)
password_bytes
byte type expected (type=type_error.bytes)
"""
# If you want the secret to be dumped as plain-text using the json method,
# you can use json_encoders in the Config class.
class SimpleModelDumpable(BaseModel):
password: SecretStr
password_bytes: SecretBytes
class Config:
json_encoders = {
SecretStr: lambda v: v.get_secret_value() if v else None,
SecretBytes: lambda v: v.get_secret_value() if v else None,
}
sm2 = SimpleModelDumpable(
password='IAmSensitive', password_bytes=b'IAmSensitiveBytes'
)
# Standard access methods will not display the secret
print(sm2)
#> password=SecretStr('**********') password_bytes=SecretBytes(b'**********')
print(sm2.password)
#> **********
print(sm2.dict())
"""
{
'password': SecretStr('**********'),
'password_bytes': SecretBytes(b'**********'),
}
"""
# But the json method will
print(sm2.json())
#> {"password": "IAmSensitive", "password_bytes": "IAmSensitiveBytes"}
(This script is complete, it should run "as is")
Json Type¶
You can use Json
data type to make pydantic first load a raw JSON string.
It can also optionally be used to parse the loaded object into another type base on
the type Json
is parameterised with:
from typing import Any, List
from pydantic import BaseModel, Json, ValidationError
class AnyJsonModel(BaseModel):
json_obj: Json[Any]
class ConstrainedJsonModel(BaseModel):
json_obj: Json[List[int]]
print(AnyJsonModel(json_obj='{"b": 1}'))
#> json_obj={'b': 1}
print(ConstrainedJsonModel(json_obj='[1, 2, 3]'))
#> json_obj=[1, 2, 3]
try:
ConstrainedJsonModel(json_obj=12)
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedJsonModel
json_obj
JSON object must be str, bytes or bytearray (type=type_error.json)
"""
try:
ConstrainedJsonModel(json_obj='[a, b]')
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedJsonModel
json_obj
Invalid JSON (type=value_error.json)
"""
try:
ConstrainedJsonModel(json_obj='["a", "b"]')
except ValidationError as e:
print(e)
"""
2 validation errors for ConstrainedJsonModel
json_obj -> 0
value is not a valid integer (type=type_error.integer)
json_obj -> 1
value is not a valid integer (type=type_error.integer)
"""
from typing import Any
from pydantic import BaseModel, Json, ValidationError
class AnyJsonModel(BaseModel):
json_obj: Json[Any]
class ConstrainedJsonModel(BaseModel):
json_obj: Json[list[int]]
print(AnyJsonModel(json_obj='{"b": 1}'))
#> json_obj={'b': 1}
print(ConstrainedJsonModel(json_obj='[1, 2, 3]'))
#> json_obj=[1, 2, 3]
try:
ConstrainedJsonModel(json_obj=12)
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedJsonModel
json_obj
JSON object must be str, bytes or bytearray (type=type_error.json)
"""
try:
ConstrainedJsonModel(json_obj='[a, b]')
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedJsonModel
json_obj
Invalid JSON (type=value_error.json)
"""
try:
ConstrainedJsonModel(json_obj='["a", "b"]')
except ValidationError as e:
print(e)
"""
2 validation errors for ConstrainedJsonModel
json_obj -> 0
value is not a valid integer (type=type_error.integer)
json_obj -> 1
value is not a valid integer (type=type_error.integer)
"""
(This script is complete, it should run "as is")
Payment Card Numbers¶
The PaymentCardNumber
type validates payment cards
(such as a debit or credit card).
from datetime import date
from pydantic import BaseModel
from pydantic.types import PaymentCardBrand, PaymentCardNumber, constr
class Card(BaseModel):
name: constr(strip_whitespace=True, min_length=1)
number: PaymentCardNumber
exp: date
@property
def brand(self) -> PaymentCardBrand:
return self.number.brand
@property
def expired(self) -> bool:
return self.exp < date.today()
card = Card(
name='Georg Wilhelm Friedrich Hegel',
number='4000000000000002',
exp=date(2023, 9, 30),
)
assert card.number.brand == PaymentCardBrand.visa
assert card.number.bin == '400000'
assert card.number.last4 == '0002'
assert card.number.masked == '400000******0002'
(This script is complete, it should run "as is")
PaymentCardBrand
can be one of the following based on the BIN:
PaymentCardBrand.amex
PaymentCardBrand.mastercard
PaymentCardBrand.visa
PaymentCardBrand.other
The actual validation verifies the card number is:
- a
str
of only digits - luhn valid
- the correct length based on the BIN, if Amex, Mastercard or Visa, and between 12 and 19 digits for all other brands
Constrained Types¶
The value of numerous common types can be restricted using con*
type functions:
from decimal import Decimal
from pydantic import (
BaseModel,
NegativeFloat,
NegativeInt,
PositiveFloat,
PositiveInt,
NonNegativeFloat,
NonNegativeInt,
NonPositiveFloat,
NonPositiveInt,
conbytes,
condecimal,
confloat,
conint,
conlist,
conset,
constr,
Field,
)
class Model(BaseModel):
upper_bytes: conbytes(to_upper=True)
lower_bytes: conbytes(to_lower=True)
short_bytes: conbytes(min_length=2, max_length=10)
strip_bytes: conbytes(strip_whitespace=True)
upper_str: constr(to_upper=True)
lower_str: constr(to_lower=True)
short_str: constr(min_length=2, max_length=10)
regex_str: constr(regex=r'^apple (pie|tart|sandwich)$')
strip_str: constr(strip_whitespace=True)
big_int: conint(gt=1000, lt=1024)
mod_int: conint(multiple_of=5)
pos_int: PositiveInt
neg_int: NegativeInt
non_neg_int: NonNegativeInt
non_pos_int: NonPositiveInt
big_float: confloat(gt=1000, lt=1024)
unit_interval: confloat(ge=0, le=1)
mod_float: confloat(multiple_of=0.5)
pos_float: PositiveFloat
neg_float: NegativeFloat
non_neg_float: NonNegativeFloat
non_pos_float: NonPositiveFloat
short_list: conlist(int, min_items=1, max_items=4)
short_set: conset(int, min_items=1, max_items=4)
decimal_positive: condecimal(gt=0)
decimal_negative: condecimal(lt=0)
decimal_max_digits_and_places: condecimal(max_digits=2, decimal_places=2)
mod_decimal: condecimal(multiple_of=Decimal('0.25'))
bigger_int: int = Field(..., gt=10000)
(This script is complete, it should run "as is")
Where Field
refers to the field function.
Arguments to conlist
¶
The following arguments are available when using the conlist
type function
item_type: Type[T]
: type of the list itemsmin_items: int = None
: minimum number of items in the listmax_items: int = None
: maximum number of items in the listunique_items: bool = None
: enforces list elements to be unique
Arguments to conset
¶
The following arguments are available when using the conset
type function
item_type: Type[T]
: type of the set itemsmin_items: int = None
: minimum number of items in the setmax_items: int = None
: maximum number of items in the set
Arguments to confrozenset
¶
The following arguments are available when using the confrozenset
type function
item_type: Type[T]
: type of the frozenset itemsmin_items: int = None
: minimum number of items in the frozensetmax_items: int = None
: maximum number of items in the frozenset
Arguments to conint
¶
The following arguments are available when using the conint
type function
strict: bool = False
: controls type coerciongt: int = None
: enforces integer to be greater than the set valuege: int = None
: enforces integer to be greater than or equal to the set valuelt: int = None
: enforces integer to be less than the set valuele: int = None
: enforces integer to be less than or equal to the set valuemultiple_of: int = None
: enforces integer to be a multiple of the set value
Arguments to confloat
¶
The following arguments are available when using the confloat
type function
strict: bool = False
: controls type coerciongt: float = None
: enforces float to be greater than the set valuege: float = None
: enforces float to be greater than or equal to the set valuelt: float = None
: enforces float to be less than the set valuele: float = None
: enforces float to be less than or equal to the set valuemultiple_of: float = None
: enforces float to be a multiple of the set valueallow_inf_nan: bool = True
: whether to allows infinity (+inf
an-inf
) and NaN values, defaults toTrue
, set toFalse
for compatibility withJSON
, see #3994 for more details, added in V1.10
Arguments to condecimal
¶
The following arguments are available when using the condecimal
type function
gt: Decimal = None
: enforces decimal to be greater than the set valuege: Decimal = None
: enforces decimal to be greater than or equal to the set valuelt: Decimal = None
: enforces decimal to be less than the set valuele: Decimal = None
: enforces decimal to be less than or equal to the set valuemax_digits: int = None
: maximum number of digits within the decimal. it does not include a zero before the decimal point or trailing decimal zeroesdecimal_places: int = None
: max number of decimal places allowed. it does not include trailing decimal zeroesmultiple_of: Decimal = None
: enforces decimal to be a multiple of the set value
Arguments to constr
¶
The following arguments are available when using the constr
type function
strip_whitespace: bool = False
: removes leading and trailing whitespaceto_upper: bool = False
: turns all characters to uppercaseto_lower: bool = False
: turns all characters to lowercasestrict: bool = False
: controls type coercionmin_length: int = None
: minimum length of the stringmax_length: int = None
: maximum length of the stringcurtail_length: int = None
: shrinks the string length to the set value when it is longer than the set valueregex: str = None
: regex to validate the string against
Arguments to conbytes
¶
The following arguments are available when using the conbytes
type function
strip_whitespace: bool = False
: removes leading and trailing whitespaceto_upper: bool = False
: turns all characters to uppercaseto_lower: bool = False
: turns all characters to lowercasemin_length: int = None
: minimum length of the byte stringmax_length: int = None
: maximum length of the byte stringstrict: bool = False
: controls type coercion
Arguments to condate
¶
The following arguments are available when using the condate
type function
gt: date = None
: enforces date to be greater than the set valuege: date = None
: enforces date to be greater than or equal to the set valuelt: date = None
: enforces date to be less than the set valuele: date = None
: enforces date to be less than or equal to the set value
Strict Types¶
You can use the StrictStr
, StrictBytes
, StrictInt
, StrictFloat
, and StrictBool
types
to prevent coercion from compatible types.
These types will only pass validation when the validated value is of the respective type or is a subtype of that type.
This behavior is also exposed via the strict
field of the ConstrainedStr
, ConstrainedBytes
,
ConstrainedFloat
and ConstrainedInt
classes and can be combined with a multitude of complex validation rules.
The following caveats apply:
StrictBytes
(and thestrict
option ofConstrainedBytes
) will accept bothbytes
, andbytearray
types.StrictInt
(and thestrict
option ofConstrainedInt
) will not acceptbool
types, even thoughbool
is a subclass ofint
in Python. Other subclasses will work.StrictFloat
(and thestrict
option ofConstrainedFloat
) will not acceptint
.
from pydantic import (
BaseModel,
StrictBytes,
StrictBool,
StrictInt,
ValidationError,
confloat,
)
class StrictBytesModel(BaseModel):
strict_bytes: StrictBytes
try:
StrictBytesModel(strict_bytes='hello world')
except ValidationError as e:
print(e)
"""
1 validation error for StrictBytesModel
strict_bytes
byte type expected (type=type_error.bytes)
"""
class StrictIntModel(BaseModel):
strict_int: StrictInt
try:
StrictIntModel(strict_int=3.14159)
except ValidationError as e:
print(e)
"""
1 validation error for StrictIntModel
strict_int
value is not a valid integer (type=type_error.integer)
"""
class ConstrainedFloatModel(BaseModel):
constrained_float: confloat(strict=True, ge=0.0)
try:
ConstrainedFloatModel(constrained_float=3)
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedFloatModel
constrained_float
value is not a valid float (type=type_error.float)
"""
try:
ConstrainedFloatModel(constrained_float=-1.23)
except ValidationError as e:
print(e)
"""
1 validation error for ConstrainedFloatModel
constrained_float
ensure this value is greater than or equal to 0.0
(type=value_error.number.not_ge; limit_value=0.0)
"""
class StrictBoolModel(BaseModel):
strict_bool: StrictBool
try:
StrictBoolModel(strict_bool='False')
except ValidationError as e:
print(str(e))
"""
1 validation error for StrictBoolModel
strict_bool
value is not a valid boolean (type=value_error.strictbool)
"""
(This script is complete, it should run "as is")
ByteSize¶
You can use the ByteSize
data type to convert byte string representation to
raw bytes and print out human readable versions of the bytes as well.
Info
Note that 1b
will be parsed as "1 byte" and not "1 bit".
from pydantic import BaseModel, ByteSize
class MyModel(BaseModel):
size: ByteSize
print(MyModel(size=52000).size)
#> 52000
print(MyModel(size='3000 KiB').size)
#> 3072000
m = MyModel(size='50 PB')
print(m.size.human_readable())
#> 44.4PiB
print(m.size.human_readable(decimal=True))
#> 50.0PB
print(m.size.to('TiB'))
#> 45474.73508864641
(This script is complete, it should run "as is")
Custom Data Types¶
You can also define your own custom data types. There are several ways to achieve it.
Classes with __get_validators__
¶
You use a custom class with a classmethod __get_validators__
. It will be called
to get validators to parse and validate the input data.
Tip
These validators have the same semantics as in Validators, you can
declare a parameter config
, field
, etc.
import re
from pydantic import BaseModel
# https://en.wikipedia.org/wiki/Postcodes_in_the_United_Kingdom#Validation
post_code_regex = re.compile(
r'(?:'
r'([A-Z]{1,2}[0-9][A-Z0-9]?|ASCN|STHL|TDCU|BBND|[BFS]IQQ|PCRN|TKCA) ?'
r'([0-9][A-Z]{2})|'
r'(BFPO) ?([0-9]{1,4})|'
r'(KY[0-9]|MSR|VG|AI)[ -]?[0-9]{4}|'
r'([A-Z]{2}) ?([0-9]{2})|'
r'(GE) ?(CX)|'
r'(GIR) ?(0A{2})|'
r'(SAN) ?(TA1)'
r')'
)
class PostCode(str):
"""
Partial UK postcode validation. Note: this is just an example, and is not
intended for use in production; in particular this does NOT guarantee
a postcode exists, just that it has a valid format.
"""
@classmethod
def __get_validators__(cls):
# one or more validators may be yielded which will be called in the
# order to validate the input, each validator will receive as an input
# the value returned from the previous validator
yield cls.validate
@classmethod
def __modify_schema__(cls, field_schema):
# __modify_schema__ should mutate the dict it receives in place,
# the returned value will be ignored
field_schema.update(
# simplified regex here for brevity, see the wikipedia link above
pattern='^[A-Z]{1,2}[0-9][A-Z0-9]? ?[0-9][A-Z]{2}$',
# some example postcodes
examples=['SP11 9DG', 'w1j7bu'],
)
@classmethod
def validate(cls, v):
if not isinstance(v, str):
raise TypeError('string required')
m = post_code_regex.fullmatch(v.upper())
if not m:
raise ValueError('invalid postcode format')
# you could also return a string here which would mean model.post_code
# would be a string, pydantic won't care but you could end up with some
# confusion since the value's type won't match the type annotation
# exactly
return cls(f'{m.group(1)} {m.group(2)}')
def __repr__(self):
return f'PostCode({super().__repr__()})'
class Model(BaseModel):
post_code: PostCode
model = Model(post_code='sw8 5el')
print(model)
#> post_code=PostCode('SW8 5EL')
print(model.post_code)
#> SW8 5EL
print(Model.schema())
"""
{
'title': 'Model',
'type': 'object',
'properties': {
'post_code': {
'title': 'Post Code',
'pattern': '^[A-Z]{1,2}[0-9][A-Z0-9]? ?[0-9][A-Z]{2}$',
'examples': ['SP11 9DG', 'w1j7bu'],
'type': 'string',
},
},
'required': ['post_code'],
}
"""
(This script is complete, it should run "as is")
Similar validation could be achieved using constr(regex=...)
except the value won't be
formatted with a space, the schema would just include the full pattern and the returned value would be a vanilla string.
See schema for more details on how the model's schema is generated.
Arbitrary Types Allowed¶
You can allow arbitrary types using the arbitrary_types_allowed
config in the
Model Config.
from pydantic import BaseModel, ValidationError
# This is not a pydantic model, it's an arbitrary class
class Pet:
def __init__(self, name: str):
self.name = name
class Model(BaseModel):
pet: Pet
owner: str
class Config:
arbitrary_types_allowed = True
pet = Pet(name='Hedwig')
# A simple check of instance type is used to validate the data
model = Model(owner='Harry', pet=pet)
print(model)
#> pet=<types_arbitrary_allowed.Pet object at 0x7f758f71cc40> owner='Harry'
print(model.pet)
#> <types_arbitrary_allowed.Pet object at 0x7f758f71cc40>
print(model.pet.name)
#> Hedwig
print(type(model.pet))
#> <class 'types_arbitrary_allowed.Pet'>
try:
# If the value is not an instance of the type, it's invalid
Model(owner='Harry', pet='Hedwig')
except ValidationError as e:
print(e)
"""
1 validation error for Model
pet
instance of Pet expected (type=type_error.arbitrary_type;
expected_arbitrary_type=Pet)
"""
# Nothing in the instance of the arbitrary type is checked
# Here name probably should have been a str, but it's not validated
pet2 = Pet(name=42)
model2 = Model(owner='Harry', pet=pet2)
print(model2)
#> pet=<types_arbitrary_allowed.Pet object at 0x7f758f71f940> owner='Harry'
print(model2.pet)
#> <types_arbitrary_allowed.Pet object at 0x7f758f71f940>
print(model2.pet.name)
#> 42
print(type(model2.pet))
#> <class 'types_arbitrary_allowed.Pet'>
(This script is complete, it should run "as is")
Generic Classes as Types¶
Warning
This is an advanced technique that you might not need in the beginning. In most of the cases you will probably be fine with standard pydantic models.
You can use
Generic Classes as
field types and perform custom validation based on the "type parameters" (or sub-types)
with __get_validators__
.
If the Generic class that you are using as a sub-type has a classmethod
__get_validators__
you don't need to use arbitrary_types_allowed
for it to work.
Because you can declare validators that receive the current field
, you can extract
the sub_fields
(from the generic class type parameters) and validate data with them.
from pydantic import BaseModel, ValidationError
from pydantic.fields import ModelField
from typing import TypeVar, Generic
AgedType = TypeVar('AgedType')
QualityType = TypeVar('QualityType')
# This is not a pydantic model, it's an arbitrary generic class
class TastingModel(Generic[AgedType, QualityType]):
def __init__(self, name: str, aged: AgedType, quality: QualityType):
self.name = name
self.aged = aged
self.quality = quality
@classmethod
def __get_validators__(cls):
yield cls.validate
@classmethod
# You don't need to add the "ModelField", but it will help your
# editor give you completion and catch errors
def validate(cls, v, field: ModelField):
if not isinstance(v, cls):
# The value is not even a TastingModel
raise TypeError('Invalid value')
if not field.sub_fields:
# Generic parameters were not provided so we don't try to validate
# them and just return the value as is
return v
aged_f = field.sub_fields[0]
quality_f = field.sub_fields[1]
errors = []
# Here we don't need the validated value, but we want the errors
valid_value, error = aged_f.validate(v.aged, {}, loc='aged')
if error:
errors.append(error)
# Here we don't need the validated value, but we want the errors
valid_value, error = quality_f.validate(v.quality, {}, loc='quality')
if error:
errors.append(error)
if errors:
raise ValidationError(errors, cls)
# Validation passed without errors, return the same instance received
return v
class Model(BaseModel):
# for wine, "aged" is an int with years, "quality" is a float
wine: TastingModel[int, float]
# for cheese, "aged" is a bool, "quality" is a str
cheese: TastingModel[bool, str]
# for thing, "aged" is a Any, "quality" is Any
thing: TastingModel
model = Model(
# This wine was aged for 20 years and has a quality of 85.6
wine=TastingModel(name='Cabernet Sauvignon', aged=20, quality=85.6),
# This cheese is aged (is mature) and has "Good" quality
cheese=TastingModel(name='Gouda', aged=True, quality='Good'),
# This Python thing has aged "Not much" and has a quality "Awesome"
thing=TastingModel(name='Python', aged='Not much', quality='Awesome'),
)
print(model)
"""
wine=<types_generics.TastingModel object at 0x7f758f500610>
cheese=<types_generics.TastingModel object at 0x7f758f5005e0>
thing=<types_generics.TastingModel object at 0x7f758f500640>
"""
print(model.wine.aged)
#> 20
print(model.wine.quality)
#> 85.6
print(model.cheese.aged)
#> True
print(model.cheese.quality)
#> Good
print(model.thing.aged)
#> Not much
try:
# If the values of the sub-types are invalid, we get an error
Model(
# For wine, aged should be an int with the years, and quality a float
wine=TastingModel(name='Merlot', aged=True, quality='Kinda good'),
# For cheese, aged should be a bool, and quality a str
cheese=TastingModel(name='Gouda', aged='yeah', quality=5),
# For thing, no type parameters are declared, and we skipped validation
# in those cases in the Assessment.validate() function
thing=TastingModel(name='Python', aged='Not much', quality='Awesome'),
)
except ValidationError as e:
print(e)
"""
2 validation errors for Model
wine -> quality
value is not a valid float (type=type_error.float)
cheese -> aged
value could not be parsed to a boolean (type=type_error.bool)
"""
(This script is complete, it should run "as is")