Settings management
One of pydantic's most useful applications is settings management.
If you create a model that inherits from BaseSettings
, the model initialiser will attempt to determine
the values of any fields not passed as keyword arguments by reading from the environment. (Default values
will still be used if the matching environment variable is not set.)
This makes it easy to:
- Create a clearly-defined, type-hinted application configuration class
- Automatically read modifications to the configuration from environment variables
- Manually override specific settings in the initialiser where desired (e.g. in unit tests)
For example:
from typing import Set
from pydantic import (
BaseModel,
BaseSettings,
PyObject,
RedisDsn,
PostgresDsn,
AmqpDsn,
Field,
)
class SubModel(BaseModel):
foo = 'bar'
apple = 1
class Settings(BaseSettings):
auth_key: str
api_key: str = Field(..., env='my_api_key')
redis_dsn: RedisDsn = 'redis://user:pass@localhost:6379/1'
pg_dsn: PostgresDsn = 'postgres://user:pass@localhost:5432/foobar'
amqp_dsn: AmqpDsn = 'amqp://user:pass@localhost:5672/'
special_function: PyObject = 'math.cos'
# to override domains:
# export my_prefix_domains='["foo.com", "bar.com"]'
domains: Set[str] = set()
# to override more_settings:
# export my_prefix_more_settings='{"foo": "x", "apple": 1}'
more_settings: SubModel = SubModel()
class Config:
env_prefix = 'my_prefix_' # defaults to no prefix, i.e. ""
fields = {
'auth_key': {
'env': 'my_auth_key',
},
'redis_dsn': {
'env': ['service_redis_dsn', 'redis_url']
}
}
print(Settings().dict())
"""
{
'auth_key': 'xxx',
'api_key': 'xxx',
'redis_dsn': RedisDsn('redis://user:pass@localhost:6379/1', ),
'pg_dsn': PostgresDsn('postgres://user:pass@localhost:5432/foobar', ),
'amqp_dsn': AmqpDsn('amqp://user:pass@localhost:5672/', scheme='amqp',
user='user', password='pass', host='localhost', host_type='int_domain',
port='5672', path='/'),
'special_function': <built-in function cos>,
'domains': set(),
'more_settings': {'foo': 'bar', 'apple': 1},
}
"""
from pydantic import (
BaseModel,
BaseSettings,
PyObject,
RedisDsn,
PostgresDsn,
AmqpDsn,
Field,
)
class SubModel(BaseModel):
foo = 'bar'
apple = 1
class Settings(BaseSettings):
auth_key: str
api_key: str = Field(..., env='my_api_key')
redis_dsn: RedisDsn = 'redis://user:pass@localhost:6379/1'
pg_dsn: PostgresDsn = 'postgres://user:pass@localhost:5432/foobar'
amqp_dsn: AmqpDsn = 'amqp://user:pass@localhost:5672/'
special_function: PyObject = 'math.cos'
# to override domains:
# export my_prefix_domains='["foo.com", "bar.com"]'
domains: set[str] = set()
# to override more_settings:
# export my_prefix_more_settings='{"foo": "x", "apple": 1}'
more_settings: SubModel = SubModel()
class Config:
env_prefix = 'my_prefix_' # defaults to no prefix, i.e. ""
fields = {
'auth_key': {
'env': 'my_auth_key',
},
'redis_dsn': {
'env': ['service_redis_dsn', 'redis_url']
}
}
print(Settings().dict())
"""
{
'auth_key': 'xxx',
'api_key': 'xxx',
'redis_dsn': RedisDsn('redis://user:pass@localhost:6379/1', ),
'pg_dsn': PostgresDsn('postgres://user:pass@localhost:5432/foobar', ),
'amqp_dsn': AmqpDsn('amqp://user:pass@localhost:5672/', scheme='amqp',
user='user', password='pass', host='localhost', host_type='int_domain',
port='5672', path='/'),
'special_function': <built-in function cos>,
'domains': set(),
'more_settings': {'foo': 'bar', 'apple': 1},
}
"""
(This script is complete, it should run "as is")
Environment variable names¶
The following rules are used to determine which environment variable(s) are read for a given field:
-
By default, the environment variable name is built by concatenating the prefix and field name.
- For example, to override
special_function
above, you could use:export my_prefix_special_function='foo.bar'
- Note 1: The default prefix is an empty string.
- Note 2: Field aliases are ignored when building the environment variable name.
- For example, to override
- Custom environment variable names can be set in two ways:
Config.fields['field_name']['env']
(seeauth_key
andredis_dsn
above)Field(..., env=...)
(seeapi_key
above)
- When specifying custom environment variable names, either a string or a list of strings may be provided.
- When specifying a list of strings, order matters: the first detected value is used.
- For example, for
redis_dsn
above,service_redis_dsn
would take precedence overredis_url
.
Warning
Since v1.0 pydantic does not consider field aliases when finding environment variables to populate settings
models, use env
instead as described above.
To aid the transition from aliases to env
, a warning will be raised when aliases are used on settings models
without a custom env var name. If you really mean to use aliases, either ignore the warning or set env
to
suppress it.
Case-sensitivity can be turned on through the Config
:
from pydantic import BaseSettings
class Settings(BaseSettings):
redis_host = 'localhost'
class Config:
case_sensitive = True
(This script is complete, it should run "as is")
When case_sensitive
is True
, the environment variable names must match field names (optionally with a prefix),
so in this example
redis_host
could only be modified via export redis_host
. If you want to name environment variables
all upper-case, you should name attribute all upper-case too. You can still name environment variables anything
you like through Field(..., env=...)
.
In Pydantic v1 case_sensitive
is False
by default and all variable names are converted to lower-case internally.
If you want to define upper-case variable names on nested models like SubModel
you have to
set case_sensitive=True
to disable this behaviour.
Note
On Windows, Python's os
module always treats environment variables as case-insensitive, so the
case_sensitive
config setting will have no effect - settings will always be updated ignoring case.
Parsing environment variable values¶
For most simple field types (such as int
, float
, str
, etc.),
the environment variable value is parsed the same way it would
be if passed directly to the initialiser (as a string).
Complex types like list
, set
, dict
, and sub-models are populated from the environment
by treating the environment variable's value as a JSON-encoded string.
Another way to populate nested complex variables is to configure your model with the env_nested_delimiter
config setting, then use an env variable with a name pointing to the nested module fields.
What it does is simply explodes your variable into nested models or dicts.
So if you define a variable FOO__BAR__BAZ=123
it will convert it into FOO={'BAR': {'BAZ': 123}}
If you have multiple variables with the same structure they will be merged.
With the following environment variables:
# your environment
export V0=0
export SUB_MODEL='{"v1": "json-1", "v2": "json-2"}'
export SUB_MODEL__V2=nested-2
export SUB_MODEL__V3=3
export SUB_MODEL__DEEP__V4=v4
You could load a settings module thus:
from pydantic import BaseModel, BaseSettings
class DeepSubModel(BaseModel):
v4: str
class SubModel(BaseModel):
v1: str
v2: bytes
v3: int
deep: DeepSubModel
class Settings(BaseSettings):
v0: str
sub_model: SubModel
class Config:
env_nested_delimiter = '__'
print(Settings().dict())
"""
{
'v0': '0',
'sub_model': {
'v1': 'json-1',
'v2': b'nested-2',
'v3': 3,
'deep': {'v4': 'v4'},
},
}
"""
(This script is complete, it should run "as is")
env_nested_delimiter
can be configured via the Config
class as shown above, or via the
_env_nested_delimiter
keyword argument on instantiation.
JSON is only parsed in top-level fields, if you need to parse JSON in sub-models, you will need to implement validators on those models.
Nested environment variables take precedence over the top-level environment variable JSON
(e.g. in the example above, SUB_MODEL__V2
trumps SUB_MODEL
).
You may also populate a complex type by providing your own parsing function to
the parse_env_var
classmethod in the Config object.
import os
from typing import Any, List
from pydantic import BaseSettings
class Settings(BaseSettings):
numbers: List[int]
class Config:
@classmethod
def parse_env_var(cls, field_name: str, raw_val: str) -> Any:
if field_name == 'numbers':
return [int(x) for x in raw_val.split(',')]
return cls.json_loads(raw_val)
os.environ['numbers'] = '1,2,3'
print(Settings().dict())
#> {'numbers': [1, 2, 3]}
import os
from typing import Any
from pydantic import BaseSettings
class Settings(BaseSettings):
numbers: list[int]
class Config:
@classmethod
def parse_env_var(cls, field_name: str, raw_val: str) -> Any:
if field_name == 'numbers':
return [int(x) for x in raw_val.split(',')]
return cls.json_loads(raw_val)
os.environ['numbers'] = '1,2,3'
print(Settings().dict())
#> {'numbers': [1, 2, 3]}
(This script is complete, it should run "as is")
Dotenv (.env) support¶
Note
dotenv file parsing requires python-dotenv to be installed.
This can be done with either pip install python-dotenv
or pip install pydantic[dotenv]
.
Dotenv files (generally named .env
) are a common pattern that make it easy to use environment variables in a
platform-independent manner.
A dotenv file follows the same general principles of all environment variables, and looks something like:
# ignore comment
ENVIRONMENT="production"
REDIS_ADDRESS=localhost:6379
MEANING_OF_LIFE=42
MY_VAR='Hello world'
Once you have your .env
file filled with variables, pydantic supports loading it in two ways:
1. setting env_file
(and env_file_encoding
if you don't want the default encoding of your OS) on Config
in a BaseSettings
class:
class Settings(BaseSettings):
...
class Config:
env_file = '.env'
env_file_encoding = 'utf-8'
2. instantiating a BaseSettings
derived class with the _env_file
keyword argument
(and the _env_file_encoding
if needed):
settings = Settings(_env_file='prod.env', _env_file_encoding='utf-8')
In either case, the value of the passed argument can be any valid path or filename, either absolute or relative to the current working directory. From there, pydantic will handle everything for you by loading in your variables and validating them.
Note
If a filename is specified for env_file
, Pydantic will only check the current working directory and
won't check any parent directories for the .env
file.
Even when using a dotenv file, pydantic will still read environment variables as well as the dotenv file, environment variables will always take priority over values loaded from a dotenv file.
Passing a file path via the _env_file
keyword argument on instantiation (method 2) will override
the value (if any) set on the Config
class. If the above snippets were used in conjunction, prod.env
would be loaded
while .env
would be ignored.
If you need to load multiple dotenv files, you can pass the file paths as a list
or tuple
.
Later files in the list/tuple will take priority over earlier files.
from pydantic import BaseSettings
class Settings(BaseSettings):
...
class Config:
# `.env.prod` takes priority over `.env`
env_file = '.env', '.env.prod'
You can also use the keyword argument override to tell Pydantic not to load any file at all (even if one is set in
the Config
class) by passing None
as the instantiation keyword argument, e.g. settings = Settings(_env_file=None)
.
Because python-dotenv is used to parse the file, bash-like semantics such as export
can be used which
(depending on your OS and environment) may allow your dotenv file to also be used with source
,
see python-dotenv's documentation for more details.
Secret Support¶
Placing secret values in files is a common pattern to provide sensitive configuration to an application.
A secret file follows the same principal as a dotenv file except it only contains a single value and the file name is used as the key. A secret file will look like the following:
/var/run/database_password
:
super_secret_database_password
Once you have your secret files, pydantic supports loading it in two ways:
1. setting secrets_dir
on Config
in a BaseSettings
class to the directory where your secret files are stored:
class Settings(BaseSettings):
...
database_password: str
class Config:
secrets_dir = '/var/run'
2. instantiating a BaseSettings
derived class with the _secrets_dir
keyword argument:
settings = Settings(_secrets_dir='/var/run')
In either case, the value of the passed argument can be any valid directory, either absolute or relative to the current working directory. Note that a non existent directory will only generate a warning. From there, pydantic will handle everything for you by loading in your variables and validating them.
Even when using a secrets directory, pydantic will still read environment variables from a dotenv file or the environment, a dotenv file and environment variables will always take priority over values loaded from the secrets directory.
Passing a file path via the _secrets_dir
keyword argument on instantiation (method 2) will override
the value (if any) set on the Config
class.
Use Case: Docker Secrets¶
Docker Secrets can be used to provide sensitive configuration to an application running in a Docker container. To use these secrets in a pydantic application the process is simple. More information regarding creating, managing and using secrets in Docker see the official Docker documentation.
First, define your Settings
class Settings(BaseSettings):
my_secret_data: str
class Config:
secrets_dir = '/run/secrets'
Note
By default Docker uses /run/secrets
as the target mount point. If you want to use a different location, change
Config.secrets_dir
accordingly.
Then, create your secret via the Docker CLI
printf "This is a secret" | docker secret create my_secret_data -
Last, run your application inside a Docker container and supply your newly created secret
docker service create --name pydantic-with-secrets --secret my_secret_data pydantic-app:latest
Field value priority¶
In the case where a value is specified for the same Settings
field in multiple ways,
the selected value is determined as follows (in descending order of priority):
- Arguments passed to the
Settings
class initialiser. - Environment variables, e.g.
my_prefix_special_function
as described above. - Variables loaded from a dotenv (
.env
) file. - Variables loaded from the secrets directory.
- The default field values for the
Settings
model.
Customise settings sources¶
If the default order of priority doesn't match your needs, it's possible to change it by overriding
the customise_sources
method on the Config
class of your Settings
.
customise_sources
takes three callables as arguments and returns any number of callables as a tuple. In turn these
callables are called to build the inputs to the fields of the settings class.
Each callable should take an instance of the settings class as its sole argument and return a dict
.
Changing Priority¶
The order of the returned callables decides the priority of inputs; first item is the highest priority.
from typing import Tuple
from pydantic import BaseSettings, PostgresDsn
from pydantic.env_settings import SettingsSourceCallable
class Settings(BaseSettings):
database_dsn: PostgresDsn
class Config:
@classmethod
def customise_sources(
cls,
init_settings: SettingsSourceCallable,
env_settings: SettingsSourceCallable,
file_secret_settings: SettingsSourceCallable,
) -> Tuple[SettingsSourceCallable, ...]:
return env_settings, init_settings, file_secret_settings
print(Settings(database_dsn='postgres://postgres@localhost:5432/kwargs_db'))
#> database_dsn=PostgresDsn('postgres://postgres@localhost:5432/env_db', )
from pydantic import BaseSettings, PostgresDsn
from pydantic.env_settings import SettingsSourceCallable
class Settings(BaseSettings):
database_dsn: PostgresDsn
class Config:
@classmethod
def customise_sources(
cls,
init_settings: SettingsSourceCallable,
env_settings: SettingsSourceCallable,
file_secret_settings: SettingsSourceCallable,
) -> tuple[SettingsSourceCallable, ...]:
return env_settings, init_settings, file_secret_settings
print(Settings(database_dsn='postgres://postgres@localhost:5432/kwargs_db'))
#> database_dsn=PostgresDsn('postgres://postgres@localhost:5432/env_db', )
(This script is complete, it should run "as is")
By flipping env_settings
and init_settings
, environment variables now have precedence over __init__
kwargs.
Adding sources¶
As explained earlier, pydantic ships with multiples built-in settings sources. However, you may occasionally
need to add your own custom sources, customise_sources
makes this very easy:
import json
from pathlib import Path
from typing import Dict, Any
from pydantic import BaseSettings
def json_config_settings_source(settings: BaseSettings) -> Dict[str, Any]:
"""
A simple settings source that loads variables from a JSON file
at the project's root.
Here we happen to choose to use the `env_file_encoding` from Config
when reading `config.json`
"""
encoding = settings.__config__.env_file_encoding
return json.loads(Path('config.json').read_text(encoding))
class Settings(BaseSettings):
foobar: str
class Config:
env_file_encoding = 'utf-8'
@classmethod
def customise_sources(
cls,
init_settings,
env_settings,
file_secret_settings,
):
return (
init_settings,
json_config_settings_source,
env_settings,
file_secret_settings,
)
print(Settings())
#> foobar='spam'
import json
from pathlib import Path
from typing import Any
from pydantic import BaseSettings
def json_config_settings_source(settings: BaseSettings) -> dict[str, Any]:
"""
A simple settings source that loads variables from a JSON file
at the project's root.
Here we happen to choose to use the `env_file_encoding` from Config
when reading `config.json`
"""
encoding = settings.__config__.env_file_encoding
return json.loads(Path('config.json').read_text(encoding))
class Settings(BaseSettings):
foobar: str
class Config:
env_file_encoding = 'utf-8'
@classmethod
def customise_sources(
cls,
init_settings,
env_settings,
file_secret_settings,
):
return (
init_settings,
json_config_settings_source,
env_settings,
file_secret_settings,
)
print(Settings())
#> foobar='spam'
(This script is complete, it should run "as is")
Removing sources¶
You might also want to disable a source:
from typing import Tuple
from pydantic import BaseSettings
from pydantic.env_settings import SettingsSourceCallable
class Settings(BaseSettings):
my_api_key: str
class Config:
@classmethod
def customise_sources(
cls,
init_settings: SettingsSourceCallable,
env_settings: SettingsSourceCallable,
file_secret_settings: SettingsSourceCallable,
) -> Tuple[SettingsSourceCallable, ...]:
# here we choose to ignore arguments from init_settings
return env_settings, file_secret_settings
print(Settings(my_api_key='this is ignored'))
#> my_api_key='xxx'
from pydantic import BaseSettings
from pydantic.env_settings import SettingsSourceCallable
class Settings(BaseSettings):
my_api_key: str
class Config:
@classmethod
def customise_sources(
cls,
init_settings: SettingsSourceCallable,
env_settings: SettingsSourceCallable,
file_secret_settings: SettingsSourceCallable,
) -> tuple[SettingsSourceCallable, ...]:
# here we choose to ignore arguments from init_settings
return env_settings, file_secret_settings
print(Settings(my_api_key='this is ignored'))
#> my_api_key='xxx'
(This script requires MY_API_KEY
env variable to be set, e.g. export MY_API_KEY=xxx
)