Skip to content

Exporting models

As well as accessing model attributes directly via their names (e.g. model.foobar), models can be converted and exported in a number of ways:

model.dict(...)

This is the primary way of converting a model to a dictionary. Sub-models will be recursively converted to dictionaries.

Arguments:

  • include: fields to include in the returned dictionary; see below
  • exclude: fields to exclude from the returned dictionary; see below
  • by_alias: whether field aliases should be used as keys in the returned dictionary; default False
  • exclude_unset: whether fields which were not explicitly set when creating the model should be excluded from the returned dictionary; default False. Prior to v1.0, exclude_unset was known as skip_defaults; use of skip_defaults is now deprecated
  • exclude_defaults: whether fields which are equal to their default values (whether set or otherwise) should be excluded from the returned dictionary; default False
  • exclude_none: whether fields which are equal to None should be excluded from the returned dictionary; default False

Example:

from pydantic import BaseModel


class BarModel(BaseModel):
    whatever: int


class FooBarModel(BaseModel):
    banana: float
    foo: str
    bar: BarModel


m = FooBarModel(banana=3.14, foo='hello', bar={'whatever': 123})

# returns a dictionary:
print(m.dict())
"""
{
    'banana': 3.14,
    'foo': 'hello',
    'bar': {'whatever': 123},
}
"""
print(m.dict(include={'foo', 'bar'}))
#> {'foo': 'hello', 'bar': {'whatever': 123}}
print(m.dict(exclude={'foo', 'bar'}))
#> {'banana': 3.14}

(This script is complete, it should run "as is")

dict(model) and iteration

pydantic models can also be converted to dictionaries using dict(model), and you can also iterate over a model's field using for field_name, value in model:. With this approach the raw field values are returned, so sub-models will not be converted to dictionaries.

Example:

from pydantic import BaseModel


class BarModel(BaseModel):
    whatever: int


class FooBarModel(BaseModel):
    banana: float
    foo: str
    bar: BarModel


m = FooBarModel(banana=3.14, foo='hello', bar={'whatever': 123})

print(dict(m))
"""
{
    'banana': 3.14,
    'foo': 'hello',
    'bar': BarModel(
        whatever=123,
    ),
}
"""
for name, value in m:
    print(f'{name}: {value}')
    #> banana: 3.14
    #> foo: hello
    #> bar: whatever=123

(This script is complete, it should run "as is")

model.copy(...)

copy() allows models to be duplicated, which is particularly useful for immutable models.

Arguments:

  • include: fields to include in the returned dictionary; see below
  • exclude: fields to exclude from the returned dictionary; see below
  • update: a dictionary of values to change when creating the copied model
  • deep: whether to make a deep copy of the new model; default False

Example:

from pydantic import BaseModel


class BarModel(BaseModel):
    whatever: int


class FooBarModel(BaseModel):
    banana: float
    foo: str
    bar: BarModel


m = FooBarModel(banana=3.14, foo='hello', bar={'whatever': 123})

print(m.copy(include={'foo', 'bar'}))
#> foo='hello' bar=BarModel(whatever=123)
print(m.copy(exclude={'foo', 'bar'}))
#> banana=3.14
print(m.copy(update={'banana': 0}))
#> banana=0 foo='hello' bar=BarModel(whatever=123)
print(id(m.bar), id(m.copy().bar))
#> 140142912945888 140142912945888
# normal copy gives the same object reference for `bar`
print(id(m.bar), id(m.copy(deep=True).bar))
#> 140142912945888 140142912942528
# deep copy gives a new object reference for `bar`

(This script is complete, it should run "as is")

model.json(...)

The .json() method will serialise a model to JSON. (For models with a custom root type, only the value for the __root__ key is serialised)

Arguments:

  • include: fields to include in the returned dictionary; see below
  • exclude: fields to exclude from the returned dictionary; see below
  • by_alias: whether field aliases should be used as keys in the returned dictionary; default False
  • exclude_unset: whether fields which were not set when creating the model and have their default values should be excluded from the returned dictionary; default False. Prior to v1.0, exclude_unset was known as skip_defaults; use of skip_defaults is now deprecated
  • exclude_defaults: whether fields which are equal to their default values (whether set or otherwise) should be excluded from the returned dictionary; default False
  • exclude_none: whether fields which are equal to None should be excluded from the returned dictionary; default False
  • encoder: a custom encoder function passed to the default argument of json.dumps(); defaults to a custom encoder designed to take care of all common types
  • **dumps_kwargs: any other keyword arguments are passed to json.dumps(), e.g. indent.

pydantic can serialise many commonly used types to JSON (e.g. datetime, date or UUID) which would normally fail with a simple json.dumps(foobar).

from datetime import datetime
from pydantic import BaseModel


class BarModel(BaseModel):
    whatever: int


class FooBarModel(BaseModel):
    foo: datetime
    bar: BarModel


m = FooBarModel(foo=datetime(2032, 6, 1, 12, 13, 14), bar={'whatever': 123})
print(m.json())
#> {"foo": "2032-06-01T12:13:14", "bar": {"whatever": 123}}

(This script is complete, it should run "as is")

json_encoders

Serialisation can be customised on a model using the json_encoders config property; the keys should be types (or names of types for forward references), and the values should be functions which serialise that type (see the example below):

from datetime import datetime, timedelta
from pydantic import BaseModel
from pydantic.json import timedelta_isoformat


class WithCustomEncoders(BaseModel):
    dt: datetime
    diff: timedelta

    class Config:
        json_encoders = {
            datetime: lambda v: v.timestamp(),
            timedelta: timedelta_isoformat,
        }


m = WithCustomEncoders(dt=datetime(2032, 6, 1), diff=timedelta(hours=100))
print(m.json())
#> {"dt": 1969660800.0, "diff": "P4DT4H0M0.000000S"}

(This script is complete, it should run "as is")

By default, timedelta is encoded as a simple float of total seconds. The timedelta_isoformat is provided as an optional alternative which implements ISO 8601 time diff encoding.

The json_encoders are also merged during the models inheritance with the child encoders taking precedence over the parent one.

from datetime import datetime, timedelta
from pydantic import BaseModel
from pydantic.json import timedelta_isoformat


class BaseClassWithEncoders(BaseModel):
    dt: datetime
    diff: timedelta

    class Config:
        json_encoders = {
            datetime: lambda v: v.timestamp()
        }


class ChildClassWithEncoders(BaseClassWithEncoders):
    class Config:
        json_encoders = {
            timedelta: timedelta_isoformat
        }


m = ChildClassWithEncoders(dt=datetime(2032, 6, 1), diff=timedelta(hours=100))
print(m.json())
#> {"dt": 1969660800.0, "diff": "P4DT4H0M0.000000S"}

(This script is complete, it should run "as is")

Serialising self-reference or other models

By default, models are serialised as dictionaries. If you want to serialise them differently, you can add models_as_dict=False when calling json() method and add the classes of the model in json_encoders. In case of forward references, you can use a string with the class name instead of the class itself

from typing import List, Optional

from pydantic import BaseModel


class Address(BaseModel):
    city: str
    country: str


class User(BaseModel):
    name: str
    address: Address
    friends: Optional[List['User']] = None

    class Config:
        json_encoders = {
            Address: lambda a: f'{a.city} ({a.country})',
            'User': lambda u: f'{u.name} in {u.address.city} '
                              f'({u.address.country[:2].upper()})',
        }


User.update_forward_refs()

wolfgang = User(
    name='Wolfgang',
    address=Address(city='Berlin', country='Deutschland'),
    friends=[
        User(name='Pierre', address=Address(city='Paris', country='France')),
        User(name='John', address=Address(city='London', country='UK')),
    ],
)
print(wolfgang.json(models_as_dict=False))
#> {"name": "Wolfgang", "address": "Berlin (Deutschland)", "friends": ["Pierre
#> in Paris (FR)", "John in London (UK)"]}
from typing import Optional

from pydantic import BaseModel


class Address(BaseModel):
    city: str
    country: str


class User(BaseModel):
    name: str
    address: Address
    friends: Optional[list['User']] = None

    class Config:
        json_encoders = {
            Address: lambda a: f'{a.city} ({a.country})',
            'User': lambda u: f'{u.name} in {u.address.city} '
                              f'({u.address.country[:2].upper()})',
        }


User.update_forward_refs()

wolfgang = User(
    name='Wolfgang',
    address=Address(city='Berlin', country='Deutschland'),
    friends=[
        User(name='Pierre', address=Address(city='Paris', country='France')),
        User(name='John', address=Address(city='London', country='UK')),
    ],
)
print(wolfgang.json(models_as_dict=False))
#> {"name": "Wolfgang", "address": "Berlin (Deutschland)", "friends": ["Pierre
#> in Paris (FR)", "John in London (UK)"]}
from pydantic import BaseModel


class Address(BaseModel):
    city: str
    country: str


class User(BaseModel):
    name: str
    address: Address
    friends: list['User'] | None = None

    class Config:
        json_encoders = {
            Address: lambda a: f'{a.city} ({a.country})',
            'User': lambda u: f'{u.name} in {u.address.city} '
                              f'({u.address.country[:2].upper()})',
        }


User.update_forward_refs()

wolfgang = User(
    name='Wolfgang',
    address=Address(city='Berlin', country='Deutschland'),
    friends=[
        User(name='Pierre', address=Address(city='Paris', country='France')),
        User(name='John', address=Address(city='London', country='UK')),
    ],
)
print(wolfgang.json(models_as_dict=False))
#> {"name": "Wolfgang", "address": "Berlin (Deutschland)", "friends": ["Pierre
#> in Paris (FR)", "John in London (UK)"]}

(This script is complete, it should run "as is")

Serialising subclasses

Note

New in version v1.5.

Subclasses of common types were not automatically serialised to JSON before v1.5.

Subclasses of common types are automatically encoded like their super-classes:

from datetime import date, timedelta
from pydantic import BaseModel
from pydantic.validators import int_validator


class DayThisYear(date):
    """
    Contrived example of a special type of date that
    takes an int and interprets it as a day in the current year
    """

    @classmethod
    def __get_validators__(cls):
        yield int_validator
        yield cls.validate

    @classmethod
    def validate(cls, v: int):
        return date.today().replace(month=1, day=1) + timedelta(days=v)


class FooModel(BaseModel):
    date: DayThisYear


m = FooModel(date=300)
print(m.json())
#> {"date": "2024-10-27"}

(This script is complete, it should run "as is")

Custom JSON (de)serialisation

To improve the performance of encoding and decoding JSON, alternative JSON implementations (e.g. ujson) can be used via the json_loads and json_dumps properties of Config.

from datetime import datetime
import ujson
from pydantic import BaseModel


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: datetime = None

    class Config:
        json_loads = ujson.loads


user = User.parse_raw('{"id": 123,"signup_ts":1234567890,"name":"John Doe"}')
print(user)
#> id=123 signup_ts=datetime.datetime(2009, 2, 13, 23, 31, 30,
#> tzinfo=datetime.timezone.utc) name='John Doe'

(This script is complete, it should run "as is")

ujson generally cannot be used to dump JSON since it doesn't support encoding of objects like datetimes and does not accept a default fallback function argument. To do this, you may use another library like orjson.

from datetime import datetime
import orjson
from pydantic import BaseModel


def orjson_dumps(v, *, default):
    # orjson.dumps returns bytes, to match standard json.dumps we need to decode
    return orjson.dumps(v, default=default).decode()


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: datetime = None

    class Config:
        json_loads = orjson.loads
        json_dumps = orjson_dumps


user = User.parse_raw('{"id":123,"signup_ts":1234567890,"name":"John Doe"}')
print(user.json())
#> {"id":123,"signup_ts":"2009-02-13T23:31:30+00:00","name":"John Doe"}

(This script is complete, it should run "as is")

Note that orjson takes care of datetime encoding natively, making it faster than json.dumps but meaning you cannot always customise the encoding using Config.json_encoders.

pickle.dumps(model)

Using the same plumbing as copy(), pydantic models support efficient pickling and unpickling.

import pickle
from pydantic import BaseModel


class FooBarModel(BaseModel):
    a: str
    b: int


m = FooBarModel(a='hello', b=123)
print(m)
#> a='hello' b=123
data = pickle.dumps(m)
print(data)
"""
b'\x80\x04\x95\x8e\x00\x00\x00\x00\x00\x00\x00\x8c\x17exporting_models_pickle
\x94\x8c\x0bFooBarModel\x94\x93\x94)\x81\x94}\x94(\x8c\x08__dict__\x94}\x94(\
x8c\x01a\x94\x8c\x05hello\x94\x8c\x01b\x94K{u\x8c\x0e__fields_set__\x94\x8f\x
94(h\x07h\t\x90\x8c\x1c__private_attribute_values__\x94}\x94ub.'
"""
m2 = pickle.loads(data)
print(m2)
#> a='hello' b=123

(This script is complete, it should run "as is")

Advanced include and exclude

The dict, json, and copy methods support include and exclude arguments which can either be sets or dictionaries. This allows nested selection of which fields to export:

from pydantic import BaseModel, SecretStr


class User(BaseModel):
    id: int
    username: str
    password: SecretStr


class Transaction(BaseModel):
    id: str
    user: User
    value: int


t = Transaction(
    id='1234567890',
    user=User(
        id=42,
        username='JohnDoe',
        password='hashedpassword'
    ),
    value=9876543210,
)

# using a set:
print(t.dict(exclude={'user', 'value'}))
#> {'id': '1234567890'}

# using a dict:
print(t.dict(exclude={'user': {'username', 'password'}, 'value': True}))
#> {'id': '1234567890', 'user': {'id': 42}}

print(t.dict(include={'id': True, 'user': {'id'}}))
#> {'id': '1234567890', 'user': {'id': 42}}

(This script is complete, it should run "as is")

The True indicates that we want to exclude or include an entire key, just as if we included it in a set. Of course, the same can be done at any depth level.

Special care must be taken when including or excluding fields from a list or tuple of submodels or dictionaries. In this scenario, dict and related methods expect integer keys for element-wise inclusion or exclusion. To exclude a field from every member of a list or tuple, the dictionary key '__all__' can be used as follows:

import datetime
from typing import List

from pydantic import BaseModel, SecretStr


class Country(BaseModel):
    name: str
    phone_code: int


class Address(BaseModel):
    post_code: int
    country: Country


class CardDetails(BaseModel):
    number: SecretStr
    expires: datetime.date


class Hobby(BaseModel):
    name: str
    info: str


class User(BaseModel):
    first_name: str
    second_name: str
    address: Address
    card_details: CardDetails
    hobbies: List[Hobby]


user = User(
    first_name='John',
    second_name='Doe',
    address=Address(
        post_code=123456,
        country=Country(
            name='USA',
            phone_code=1
        )
    ),
    card_details=CardDetails(
        number=4212934504460000,
        expires=datetime.date(2020, 5, 1)
    ),
    hobbies=[
        Hobby(name='Programming', info='Writing code and stuff'),
        Hobby(name='Gaming', info='Hell Yeah!!!'),
    ],
)

exclude_keys = {
    'second_name': True,
    'address': {'post_code': True, 'country': {'phone_code'}},
    'card_details': True,
    # You can exclude fields from specific members of a tuple/list by index:
    'hobbies': {-1: {'info'}},
}

include_keys = {
    'first_name': True,
    'address': {'country': {'name'}},
    'hobbies': {0: True, -1: {'name'}},
}

# would be the same as user.dict(exclude=exclude_keys) in this case:
print(user.dict(include=include_keys))
"""
{
    'first_name': 'John',
    'address': {'country': {'name': 'USA'}},
    'hobbies': [
        {
            'name': 'Programming',
            'info': 'Writing code and stuff',
        },
        {'name': 'Gaming'},
    ],
}
"""

# To exclude a field from all members of a nested list or tuple, use "__all__":
print(user.dict(exclude={'hobbies': {'__all__': {'info'}}}))
"""
{
    'first_name': 'John',
    'second_name': 'Doe',
    'address': {
        'post_code': 123456,
        'country': {'name': 'USA', 'phone_code': 1},
    },
    'card_details': {
        'number': SecretStr('**********'),
        'expires': datetime.date(2020, 5, 1),
    },
    'hobbies': [{'name': 'Programming'}, {'name': 'Gaming'}],
}
"""
import datetime

from pydantic import BaseModel, SecretStr


class Country(BaseModel):
    name: str
    phone_code: int


class Address(BaseModel):
    post_code: int
    country: Country


class CardDetails(BaseModel):
    number: SecretStr
    expires: datetime.date


class Hobby(BaseModel):
    name: str
    info: str


class User(BaseModel):
    first_name: str
    second_name: str
    address: Address
    card_details: CardDetails
    hobbies: list[Hobby]


user = User(
    first_name='John',
    second_name='Doe',
    address=Address(
        post_code=123456,
        country=Country(
            name='USA',
            phone_code=1
        )
    ),
    card_details=CardDetails(
        number=4212934504460000,
        expires=datetime.date(2020, 5, 1)
    ),
    hobbies=[
        Hobby(name='Programming', info='Writing code and stuff'),
        Hobby(name='Gaming', info='Hell Yeah!!!'),
    ],
)

exclude_keys = {
    'second_name': True,
    'address': {'post_code': True, 'country': {'phone_code'}},
    'card_details': True,
    # You can exclude fields from specific members of a tuple/list by index:
    'hobbies': {-1: {'info'}},
}

include_keys = {
    'first_name': True,
    'address': {'country': {'name'}},
    'hobbies': {0: True, -1: {'name'}},
}

# would be the same as user.dict(exclude=exclude_keys) in this case:
print(user.dict(include=include_keys))
"""
{
    'first_name': 'John',
    'address': {'country': {'name': 'USA'}},
    'hobbies': [
        {
            'name': 'Programming',
            'info': 'Writing code and stuff',
        },
        {'name': 'Gaming'},
    ],
}
"""

# To exclude a field from all members of a nested list or tuple, use "__all__":
print(user.dict(exclude={'hobbies': {'__all__': {'info'}}}))
"""
{
    'first_name': 'John',
    'second_name': 'Doe',
    'address': {
        'post_code': 123456,
        'country': {'name': 'USA', 'phone_code': 1},
    },
    'card_details': {
        'number': SecretStr('**********'),
        'expires': datetime.date(2020, 5, 1),
    },
    'hobbies': [{'name': 'Programming'}, {'name': 'Gaming'}],
}
"""

(This script is complete, it should run "as is")

The same holds for the json and copy methods.

Model and field level include and exclude

In addition to the explicit arguments exclude and include passed to dict, json and copy methods, we can also pass the include/exclude arguments directly to the Field constructor or the equivalent field entry in the models Config class:

from pydantic import BaseModel, Field, SecretStr


class User(BaseModel):
    id: int
    username: str
    password: SecretStr = Field(..., exclude=True)


class Transaction(BaseModel):
    id: str
    user: User = Field(..., exclude={'username'})
    value: int

    class Config:
        fields = {'value': {'exclude': True}}


t = Transaction(
    id='1234567890',
    user=User(
        id=42,
        username='JohnDoe',
        password='hashedpassword'
    ),
    value=9876543210,
)

print(t.dict())
#> {'id': '1234567890', 'user': {'id': 42}}

(This script is complete, it should run "as is")

In the case where multiple strategies are used, exclude/include fields are merged according to the following rules:

  • First, model config level settings (via "fields" entry) are merged per field with the field constructor settings (i.e. Field(..., exclude=True)), with the field constructor taking priority.
  • The resulting settings are merged per class with the explicit settings on dict, json, copy calls with the explicit settings taking priority.

Note that while merging settings, exclude entries are merged by computing the "union" of keys, while include entries are merged by computing the "intersection" of keys.

The resulting merged exclude settings:

from pydantic import BaseModel, Field, SecretStr


class User(BaseModel):
    id: int
    username: str  # overridden by explicit exclude
    password: SecretStr = Field(exclude=True)


class Transaction(BaseModel):
    id: str
    user: User
    value: int


t = Transaction(
    id='1234567890',
    user=User(
        id=42,
        username='JohnDoe',
        password='hashedpassword'
    ),
    value=9876543210,
)

print(t.dict(exclude={'value': True, 'user': {'username'}}))
#> {'id': '1234567890', 'user': {'id': 42}}

(This script is complete, it should run "as is")

are the same as using merged include settings as follows:

from pydantic import BaseModel, Field, SecretStr


class User(BaseModel):
    id: int = Field(..., include=True)
    username: str = Field(..., include=True)  # overridden by explicit include
    password: SecretStr


class Transaction(BaseModel):
    id: str
    user: User
    value: int


t = Transaction(
    id='1234567890',
    user=User(
        id=42,
        username='JohnDoe',
        password='hashedpassword'
    ),
    value=9876543210,
)

print(t.dict(include={'id': True, 'user': {'id'}}))
#> {'id': '1234567890', 'user': {'id': 42}}

(This script is complete, it should run "as is")